

TOP LED:1206IRC-85L10I30 (1206SMD LED - 850nm IR)

CUSTOMER APPOVED SIGNATURES	SALES	APPROVED	CHECKED	PREPARED
	APPROVED	BY	BY	BY
	8			

BEST LED SHENZHEN BEST LED OPTO-ELECTRONIC CO.,LTD

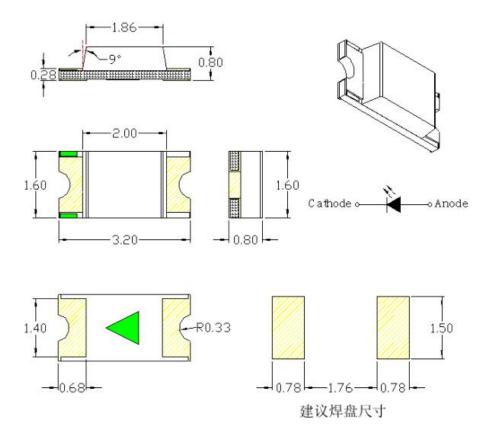
1. Features

• Color:850nm IR LED

• Lens: Water clear

• Chip Size:275um*275um

AlGaAs/AlGaAs infrared chip


EIA STD Package

• Meet ROHS, Green Product

• Compatible With SMT Automatic Equipment

• Compatible With Infrared Reflow Solder And Wave Solder Process

2. Package Profile & Soldering PAD Suggested

Notes: 1. All dimensions are in millimeters;

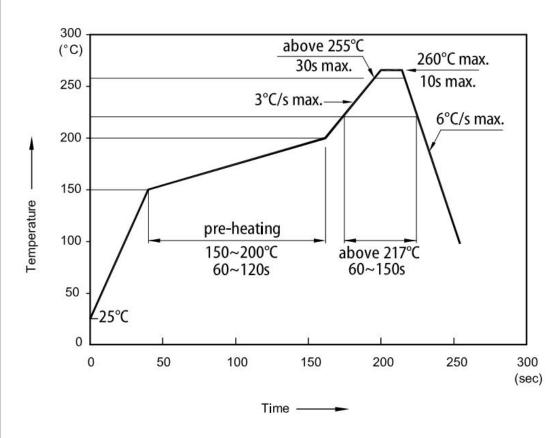
2. Tolerance is \pm 0.10 mm unless otherwise noted.

3. Absolute Maximum Ratings At Ta=25°C

Parameter	Symbol	Rating	Unit	
Power Dissipation	Pd	50	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	300	mA	
DC Forward Current	IF	30	mA	
Reverse Voltage	Vr	5	V	
Operating Temperature Range	Topr	-25°C	~ +80°C	
Storage Temperature Range	Tstg	-40°C	~ +80°C	
Soldering Condition	Tsol	Reflow soldering: 260°C For 5 Seconds Hand soldering: 300°C For 3 Seconds		
Electro-Static-Discharge(HBM)	ESD	2000V		
Service life under normal conditions	Time	80000h		
Service life under normal conditions	Time	5 years		
Packing	pcs	2000per reel		

4. Electrical Optical Characteristics At Ta=25℃

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Radiant Intensity	Ee	1.3		2.8	mW/sr	IF=20mA
		3		8		IF=50mA
Viewing Angle	201/2		120		deg	IF=100mA
Peak Wavelength	λр	840	850		nm	IF=100mA
Spectral Bandwidth	Δλ		50		nm	IF=100mA
Forward Voltage	VF	1.3	1.4	1.6	V	IF=20mA
		1.4	1.5	1.8		IF=50mA
Reverse Current	IR			5	uA	VR=5V


Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

5. Typical Electrical-Optical Characteristics Curves Forward current vs. Forward Voltage Relative Intensity vs. Forward Current 8.0 1000 Relative Intensity Normalize 6.0 Forward Current (mA) 100 620mA 10 2.0 0.0 0.0 1.0 3.0 4.0 2.0 Forward Voltage(V) 1000 10 100 Forward Current(mA) Relative Intensity vs. Temperature Forward Voltage vs. Temperature 2.0 1.4 Relative Intensity 20mA Normalize @25°C G T T Forward Voltage 20m A Normalize @25°C 1.2 1.0 0.8 0.6 0.0 0 20 40 60 Ambient Temperature(℃) 0 20 40 60 Ambient Temperature(°C) 100 -40 -20 -40 -20 80 100 Relative Intensity vs. Wavelength 1.0 Relative Intensity(%) @20mA 0.0 700 800 avelength(nm) 900 1000

6. SMD LED Technical Data

Reflow soldering profile for LEAD-FREE SMD process

Notes:

- 1. Don't cause stress to the LEDs while it is exposed to high temperature.
- 2. The maximum number of reflow soldering passes is 2 times
- 3. Reflow soldering is recommended. Other soldering methods are not recommended as they mightcause damage to the product

HANDLING PRECAUTIONS

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Althouth its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.

2. Do not directly touch or handle the silicone lens surface.It may damage the internal circuitry.

3. Do not stack together assembled PCBS containing exposed LEDS.Impact may scratch the silicone lens or damage the internal circuitry.

- 4. 4-A The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks
- 4-B A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup
 - 4-C The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production
 - 4-D As silicone encapsulation is permeable to gases, some corrosive substances such as H2S might corrode silver plating of leadframe. Special care should be taken if an LED with Silicone encapsulation is to used near such substances.

- 5. Avoid continued exposure to the condensing moisture environment and keep the product away from rapid transitions in ambient temperature.
- 6. Product in the original sealed package is recommended to be assembled within 24 hours of opening.