

Our WKT brand establish on 2007 with 14 years experience on ball screw manufacturer industry. We focus on constant product development which win good reputation in China and Overseas market. Meanwhile, we also develop ball screw related product like linear motion products so that give customer overall system solution

WKT brand advantages:

1.Ready stock:

We do ready stock for standard ball screw shafts with standard nuts, the minimum leading time is 3 days which quickly meet customer and distributor demand.

2. Customized design:

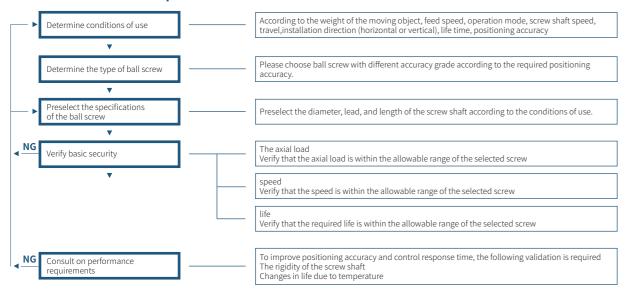
At the same time, customized ball screws with flexible design of ball screw shafts and ball screw nuts will make your unique technical design of a linear motion come true.

MAIN PRODUCTS

01	Technical Information
01	Technical Information

Ball screw select steps	004
Accuracy Measurement and Mounting precautions	005
Part Number	006
Ball recirculation ways	007

O2 Standard Ball Screw Nut


Nominal diameter 4/5/6	00
Nominal diameter 8	00
Nominal diameter 10	01
Nominal diameter 12	01
Nominal diameter 14/16/20	01
Bi-directional Ball Screw	01

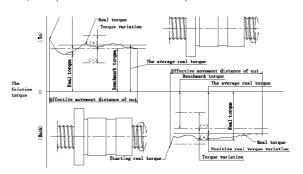
03

End-journal machining

End Journal Machining ----- 017

Ball screw model selection steps

Precision requirements for ball screw for different purposes

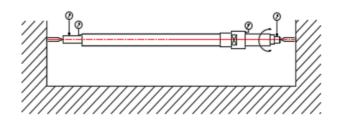

						Accurac	y Grade			
Pi	urposes	Axis	C0	C1	C2	C3	C5	C7	C8	C10
	L at la a	Χ		•	•	•	•			
	Lathe	Z		İ		•	•	İ		
	Processing center	XY		İ	•	•	•			İ
	machine	Z			•	•	•			
		XY				•	•			İ
	Drilling machine	Z		İ		İ	•	•		i –
	Coordinate boring	XY	•	•						
	machine	Z	•	•						
		Χ		İ		•	•	İ		
	Surface grinding machine	Υ		•	•	•	•			İ
CNC	macnine	Z		•	•	•	•			
Machine tool	Cylindrical grinding	Х	•	•	•	İ	İ	İ		İ
	machine	Z		•	•	•	İ	İ		İ
	Electric discharge	XY	•	•	•					1
	machine	Z		•	•	•	•			İ
		XY	•	•	•					i –
	Wire cutting machine	Z	•	•	•	•				
	Ü	UV		•	•	•				1
	Die-cutting machine	XY				•	•	•		İ
	Laser processing	Χ			<u> </u>	•	•	•		†
	machine	Z				•	•	•		<u> </u>
	Woodworking machine						•	•	•	•
General m	nachinery, special mach					•	•	•	•	•
	Rectangular	Assembly				•	•	•	•	
	coordinate machine	Other					•	•	•	•
ndustrial robot	Vertical multi-joint	Assembly					•	•	•	İ
	type	Other						•	•	<u> </u>
	Cylindrical coord	linates				•	•	•		
	Exposure dev		•	•						İ
	Chemical processing	machinery		İ	•	•	•	•	•	•
Semiconductor	Lead welding ma	achine		•	•					
related	Probe		•	•	•	•	ĺ	ĺ		1
equipment	Printed circuit boar	d drilling				•				Ì
	machine									<u> </u>
	Electronic componer machine	nt insertion			•	•	•	•		
Three coo	rdinate measuring equi	pment	•	•	•					
	e processing equipmer		•	•	•					1
	ction molding machine						Ì	•	•	•
,	Office equipment			<u> </u>	İ	İ	•	•	•	

Appropriate amount of preloading

The amount of preloading should be determined by the required rigidity or by the tooth side clearance. However, preloading may have the following effects:

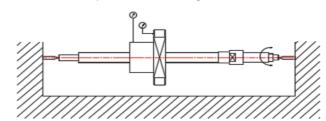
- 1. Dynamic torque increases
- 2. The positioning accuracy is reduced due to heating and temperature rise
- 3. Shorten service life

Therefore, a low preload should be set as far as possible.



Method for measuring precision of ball screw assembling part

WKT ball screw measuring Geometric Tolerance based on screw shaft central axis, below is measuring process:


Using a qualified deflection instrument (or machine tool with a center). Withstanding two ends of the screw by center, so that the screw is supported on the deflection instrument or machine tool smoothly. The magnetic dial seat of the dial indicator is attracted On the surface of the deflection instrument or the machine tool guide rail. At the same time, the probe of the meter head should be at the angle of <30° with the surface to be measured, and touch the measurement part; rotating dial makes the pointer to 0, while rotating the screw, Reading the dial indication. During a rotation period, the scale within the range of the dial pointer's left-right deflection is the measured data.

This method can measure the runout of any outside surface of the screw and the central. As shown below:

The perpendicularity of the central axis and the end surface of the nut (or flange assembling surface)

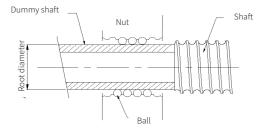
Using a qualified instrument (or machine tool with a center), Withstanding two ends by center, so that the screw is supported on the deflection instrument or machine tool smoothly. See the below drawings:

Measuring nut's external diameter runout, attaching the magnetic dial base of the dial indicator to the surface of the deflection instrument or the machine tool guide rail, at the same time, the probe of the meter head is lightly touched on the measurement position in an attitude with the angle of <30; Rotating the dial makes pointer to 0, while rotating the screw (there is no relative movement between the screw and nut), reading dial indication. Within one rotation period, the scale left and right deflection of the dial pointer is the measured value; if measuring nut's end face runout, the dial indicator must be installed on the base of the height ruler which can be adjusted manually. The base of the height ruler is installed on the surface of the guide rail. Put meter head vertically on screw nut end surface, rotating hand to make dial indicator a vertical motion. The the scale within the range of the dial pointer deflection is the measured data.

Precautions for the use of ball screw

O Precautions for handling and installation

1. If the nut is removed from the screw shaft, the steel balls will fall out of the nut and make it unusable. Do not disassemble. Otherwise, impurities will enter the interior and damage the assembly precision of each part. When need to remove the nut, please use the special false axis.


- 2. Do not impact the nut External shock will damage the outer circle of the screw shaft, spiral groove and circulation parts, resulting in poor circulation and loss of function. Please avoid it.
- 3. Pay attention to the nut falling off due to free fall Tilting ball screws and nuts may fall due to dead weight, please pay attention. Especially when used as the vertical axis, the possibility of nut falling due to dead weight is greater, please set the fall prevention mechanism
- 4. Check screw smoothness before use Test the flexibility by turning the screw shaft with the fixing nut, or by turning the nut with the fixing shaft.

Precautions for use

- 1. Please use the ball screw in a clean environment If garbage, chips and other foreign bodies enter the ball screw, it will lead to damage to the ball circulation parts and loss of function, so please set a cover to prevent foreign bodies.
- 2. Do not make the ball screw nut overrun during use. Otherwise it will lead to ball drop and ball circulation parts damage and other faults
- 3. Please avoid using in an environment over 80°C . Failure to do so may result in damage to circulation parts and seals.
- 4. When the support part of the ball screw shaft and the nut produce axial deviation or tilt, the nut will bear off-load, which will lead to shortened service life in serious cases, so please pay attention to the assembly precision.

○ Remove nut from screw to false shaft

- remove nut from screw shaft
- Make the lead screw shaft into a vertical state, and align the axis of the auxiliary shaft with the lead screw shaft at the end face of the supporting side of the lead
- · Gently turn the nut and slowly move it to the auxiliary shaft .
- · After confirming that both ends of the nut have been completely moved to the auxiliary shaft, remove the auxiliary shaft from the lead screw shaft.
- · Please take good care of it. Do not let the nut fall off the auxiliary shaft.

O Install the nut from the false shaft to the screw rod

- Remove the nut from the auxiliary shaft to the screw shaft
- · Make the lead screw shaft into a vertical state, and align the axis of the auxiliary shaft with the lead screw shaft at the end face of the supporting side of the lead
- ·Gently press the nut in the direction of the screw shaft and rotate it slowly to the screw shaft
- When moving the nut to the lead screw axis, if there is a tight or stuck feeling, do not force the nut to move, carefully check the situation and then re-work.

Part Number / Ordering information

Miniature Ball Screw

Number	Representative name	Marking mode	Meaning				
	Tla d to a . a . d a	M	standard nut				
1	Thread type code	G	custom ballnut				
		T.	Floating deflector				
		U	waist shaped floating deflector				
2	Cycle mode	K	Cutting-type deflector				
	Cycle mode	Р	Cover plate deflector				
		W	Intubated deflector				
		E	End cover deflector				
			O Round nut with flange without milling flat Round nut with flange				
		F	double milled flat Round nut Round nut Round nut with flange				
	Notabasa	ſ	with flange milling tripartite Round nut with flange				
3	Nut shape		nilled square Round nut with flange milling hexagon				
		S	Square nut				
		A	Round nut with Metric Thread at one end				
		В	With trunnion				
		С	Cylindrical with keyway				
4	Nominal diameter	value	unit mm				
5	Lead	value	unit mm				
6	Extra code letters	letter	B, C, D, E, F, G, of the same specification,there are more than one mother, distinguish with letters, such as MIF0802B (the first standard mother A omitted)				
7	Number of circuit	Numerical value	Number of turns				
8	Rotation direction	LH\RL	LH = left-hand, RL = left hand + right hand,right hand is not marked				
9	Total length of thread	value	Length of thread				
10	Length of shaft	value	Length of ball screw shaft				
		G (not marked by default)	GCr15				
		S1	SS304				
11)	Material	S2	SS316				
		S 3	SS316L				
		S4	SS440C (9Cr18)				
12	Accuracy grade	C+Number	Accuracy grade of ball screw				

Steel ball circulation mode

Internal Deflector

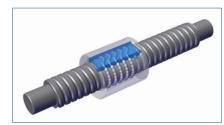
Internal Deflector return is the most basic and widely used, with the help of path on the role of the bead groove, forcing the ball rolling along the raceway, over the screw thread raceway after the tooth tip, back to the initial raceway, formed a circular ball chain, suitable for all kinds of diameter and nut style. In all circulation systems, the nut diameter Internal Deflector return can be minimized, suitable for all kinds of precision micro equipment.

Return Plate

Nut with return plate, suitable for large lead ball screw, large load, and low in

End-cap

Refers to the way in which the steel ball rolls along the groove between the screw shaft and the nut, passes through the through hole on the nut through the path installed on the end cover backer at both ends of the nut, and returns to the original position. It has stronger scraping effect, and the strengthening of the circulating backflow structure increases the function of high rigidity and high speed. It is suitable for the design of high speed light load and low noise.



The return tube recirculation type is an evolution from the internal deflector. To guide the balls into and out of the elbow tube by means of a tongue bevel at the end of the elbow tube inserted into the hole or other form of bead stopper.

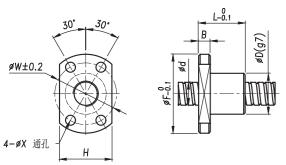
Liner Return

Liner Return type has the advantages of small space and high load capacity, while with higher difficulty. So this type is proper for some special situations.

Professional supplier of transmission components

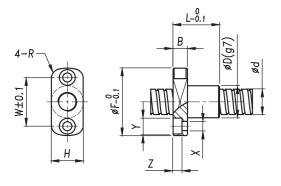
Screwtech has a full range products including ball screw, lead screw, support units, coupling, linear guideways, linear module, positioning slides, linear actuator, etc.

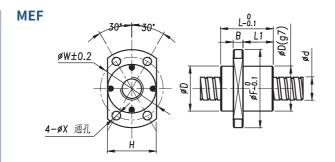
The abilities of providing technical support, solutions and customized services make SCREWTECH your best choice for partners.



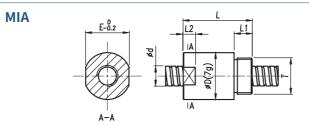
Nominal Diameter 4,5,6 **Ballscrew Nut in Stock**

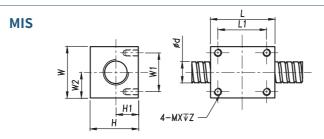
Nominal Diameter 8 Ballscrew Nut in Stock


Miniature Ball Screw //////



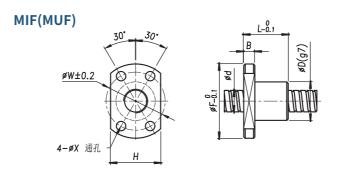
Model	d	D	F	L	В	W	Н	Х
MIF0401	4	10	20	12	3	15	14	2.9
MIF0501	5	10	20	12	3	15	14	2.9
MIF0601	6	12	24	15	3.5	18	16	3.4
MIF0601B	6	13	26	17	4	20	16	3.4
MIF0601C	6	11	23	14.5	3.5	17	15	3.4
MIF0602	6	12	24	15	3.5	18	16	3.4
MIF0602B	6	15	28	17	4	22	19	3.4


MIF


Model	d	D	F	L	В	W	Н	Х	Υ	Z	R
MIF0601D	6	10	21	14.5	4.5	15	10	2.9	5	2.9	3

Model	d	D	F	L	L1	В	W	Н	Х
MEF0606	6	14	27	17	9.5	4	21	16	3.4

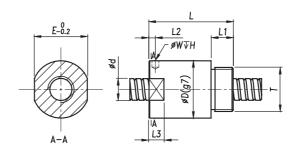
Model	d	D	L	L1	L2	E	T
MIA0601B	6	12	15	5	-	-	M10x1
MIA0602	6	12	20	6	-	-	M10x1
MIA0602B	6	12	16	5	-	-	M10x1
MIA0602C	6	12	20	6	8	11	M10x1

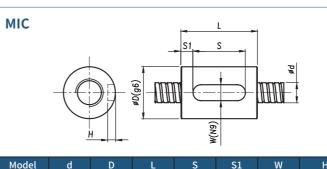


Model	d	L	L1	W	W1	W2	Н	H1	Х	Z
MIS0601	6	16	12	14	10	7	12	6	2.5	5
MIS0601B	6	20	15	13	8	6.5	11	5.5	2.5	5
MIS0601C	6	15	10	15	10	7.5	12.5	6.5	2.5	5.5

Model	Nominal diameter	Lead	Accuracy grade	Ball Diameter	Circuts	Basic rate	d load(N)	Axial clearance	Preloading torque
Model	(mm)	(mm)		Batt Blattleter	Circuts	Dynamic load	Static load	(mm)	N*cm
	4	1		0.8	3	490	700	0-0.005	-
MIF	5	1	C3,	0.8	3	530	810	0-0.005	-
MILE	6	1		0.8	3	580	1000	0-0.005	0.13
		2		1.2	3	750	1200	0-0.005	0.13
MIA		1	C5,	0.8	3	580	1000	0-0.005	-
IMIA	6	2		1.2	3	750	1200	0-0.005	-
MEF	6	6		1	3.2	870	1450	0-0.005	-
MIS	6	1		0.8	3	660	1110	0-0.005	-
Th	e above models	can be made as	left hand threa	d, right hand threa	ad or Bi-direct	inal(left hand+right	hand) thread, spec	cial sizes can be c	ustomized.

	Performance testing					
Free service	Seletion consultance					
	Design Assistance					
Please contact the salesman for details						


	Stainless steel and other customized materials								
	Surface treatment								
Services beyond standard sizes	Customized Ballscrew Nut and end journal								
3.203	Grease Replacing								
	Maintenance and assembling								
Plea	Please contact the salesman for details								

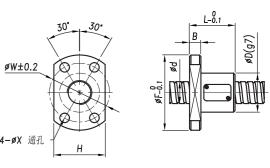

Model	d	D	F	L	В	W	Н	Х	油孔
MIF0801	8	14	27	16	4	21	18	3.4	-
MIF0801B	8	16	29	17	4	23	18	3.4	-
MIF0801C	8	13	26	15	4	20	17	3.4	-
MIF0801D	8	12	25	15	4	19	16	3.4	-
MIF0802	8	14	27	16	4	21	18	3.4	-
MIF0802B	8	16	29	26	4	23	20	3.4	-
MIF0802C	8	15	28	18	4	22	19	3.4	-
MIF0802D	8	14	27	17	6	21	19	3.4	-
MIF0802E	8	15	28	22	5	22	19	3.4	-
MIF0802.5	8	16	29	26	4	23	20	3.4	-
MIF0802.5B	8	16	28	30	6	22	19	3.4	-
MUF0804	8	16	29	16	4	23	20	3.4	-

MIA

MIC0801

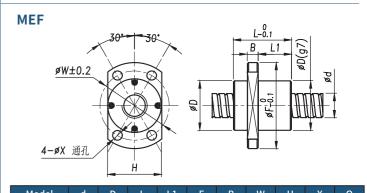
Model	d	D	L	L1	L2	L3	W	Н	Е	T
MIA0801	8	16	22	8	-	-	-	-	-	M14x1
MIA0802	8	16	27	8	-	-	-	-	-	M14x1
MIA0802B	8	18	27	8	5	5	-	-	17	M14x1
MIA0802.5B	8	17.5	23.5	7.5	3	-	3.2	2	-	M15x1

16


10

	Performance testing
Free service	Seletion consultance
	Design Assistance

Please contact the salesman for details


14

MPF

Model	d	D	F	L	В	W	Н	Х	Q
MPF0804	8	21	39	28	5	31	23	4.5	-
MPF0805	8	18	31	28	4	25	20	3.4	-

Model	d	D	F	L	L1	В	W	Н	Х	Q
MPF0808	8	18	31	30	6	4	25	20	3.4	-

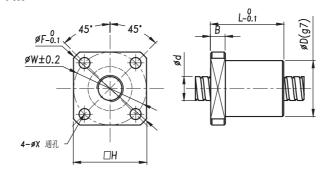
18 21.5

ΛIS	<u> </u>
	H1 4-MX⊽Z

Model	d	L	L1	W	W1	W2	Н	H1	Х	Z
MIS0801	8	20	15	16	12	8	15	7	2.5	5
MIS0801B	8	20	15	14	8	7	13	6.5	2.5	5
MIS0802	8	20	15	16	12	8	15	7	2.5	5

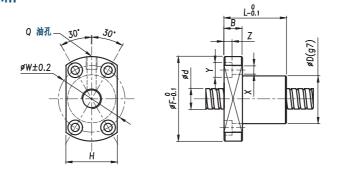
Madal	Nominal	Lead	Accuracy	Dell Diamet	Cinneta	Basic rate	ed load(N)	Axial	Preloading
Model	diameter (mm)	(mm)	grade	Ball Diameter	Circuts	Dynamic load	Static load	clearance (mm)	torque N*cm
		1		0.8	3	780	1650	0-0.005	0.2
ME		2		1.2	3	1500	2600	0-0.005	0.2
MIF	8	2.5		1.2	3	1850	3000	0-0.005	0.2
		4		1.588	3	2350	3300	0-0.005	0.2
		1		0.8	4	780	1650	0-0.005	-
MIA	8	2		1.2	4	1500	2600	0-0.005	-
		2.5	C3.	1.588	4	1850	3000	0-0.005	-
MIC	8	1	C3, C5,	0.8	3	1350	2250	0-0.005	-
MEF	8	8		1.588	3.2	2200	3800	0-0.005	-
		4		2	3.5	2600	4200	0-0.005	-
MPF	8	5		1.588	2.5	1800	3000	0-0.005	-
		8		1.588	2.5	1700	3400	0-0.005	-
		1		0.8	3	780	1650	0-0.005	-
MIS	8	2		1.2	3	850	1600	0-0.005	-

The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.



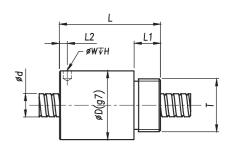
øW±0.2

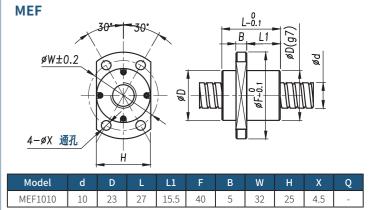
Model	d	D	F	L	В	W	Н	Х	Q
MIF1002	10	18	35	28	5	27	22	4.5	-
MIF1003	10	20	37	32	6	29	24	4.5	-
MIF1004	10	20	37	38	8	29	24	4.5	M5


MIF

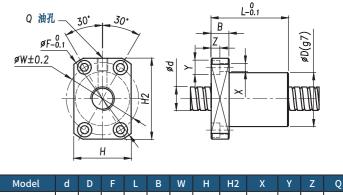
MIF

Model	d	D	F	L	В	W	Н	Х	Q
MIF1003B	10	23	39	30	6	29.7	30	4.5	-
MIF1004B	10	23	41	30	6	30	30	4.5	-


MIF

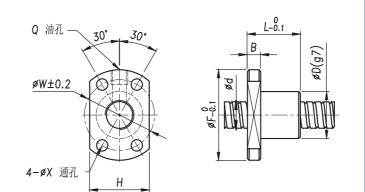

Model	d	D	F	L	В	W	Н	Х	Υ	Z	Q
MIF1004C	10	26	46	34	10	36	28	4.5	8	4.5	М6

	Performance testing
Free service	Seletion consultance
	Design Assistance
Please co	ntact the salesman for details


MIA

Model	d	D	L	L1	L2	W	Н	T
MIA1002	10	19.5	22	7.5	3	3.2	2.5	M17x1
MIA1002B	10	18	28	7	-	-	-	M16x1
MIA1004	10	21	30	8	3	3.2	3	M18x1

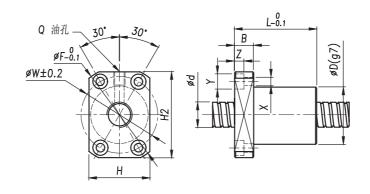
MWF


Model	đ	D	F	L	В	W	Н	H2	Х	Υ	Z	Q
MWF1004	10	26	46	34	10	36	28	42	4.5	8	4.4	М6

Services beyond standard sizes	Customized Ballscrew Nut and end journal Grease Replacing Maintenance and assembling					
Services beyond standard sizes	Customized Ballscrew Nut and end journal					
Services beyond standard sizes						
la	Surface treatment					
1	Surface treatment					
	Stainless steel and other customized materials					

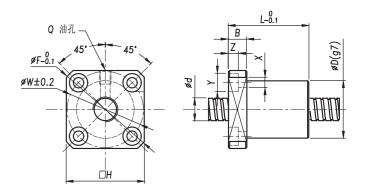
Model	Nominal diameter	Lead	Accuracy	Ball Diameter	Circuts	Basic rate	d load(N)	Axial clearance	Preloading
Model	(mm)	(mm)	grade	Dall Diameter	Circuts	Dynamic load	Static load	(mm)	torque N*cm
		2		1.588	3	1500	2600	0-0.005	0.24
MIF	10	3		2	3	2600	5200	0-0.005	0.24
		4		2.381	3	3000	5200	0-0.005	0.24
MIA	10	2	C3,	1.2	4	1950	3800	0-0.005	-
MIA	10	4	C3, C5,	2.381	3	3000	5200	0-0.005	-
MEF	10	10		2	3.2	3300	5900	0-0.005	-
MPF	10	10		2	2.5	2470	4600	0-0.005	-
MWF	10	4		2	2.5	3350	5900	0-0.005	-

The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.

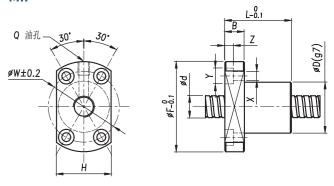


Model	d	D	F	L	В	W	Н	Х	Q
MIF1201	12	20	37	28	5	29	24	4.5	-
MIF1202	12	20	37	28	5	29	24	4.5	-
MIF1203	12	22	39	32	6	31	26	4.5	-
MIF1204C	12	24	40	28	6	32	25	3.5	-
MIF1205	12	22	43	38	8	31	26	4.5	M5

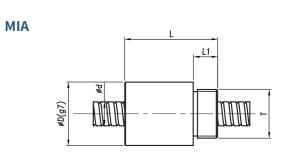
MIF


MIF

Model	d	D	F	L	В	W	Н	Х	Υ	Z	H2	Q
MIF1202B	12	20	40	33	8	29	25	4.5	8	5	36	M5
MIF1204B	12	26	46	34	8	36	28	4.5	8	4.5	42	M5
MIF1205B	12	30	50	40	10	40	32	4.5	8	4	45	М6


	Performance testing
Free service	Seletion consultance
	Design Assistance
Please co	ntact the salesman for details

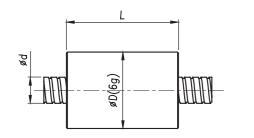
MIF



Model	d	D	F	L	В	W	Ξ	Х	Υ	Z	Q
MIF1202C	12	25	44	35	8	33	34	4.5	8	4.4	M5

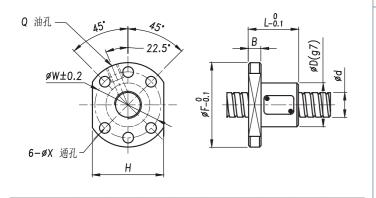
MIF

Model	d	D	F	L	В	W	Н	Х	Υ	Z	Q
MIF1204D	12	24	44	40	10	34	34	4.5	8	4.5	M7


Model	d	D	L	L1	T
MIA1204	12	25.5	34	10	M20x1
MIA1205	12	24	38	10	M20x1
MIA1202	12	20	28	10	M18x1

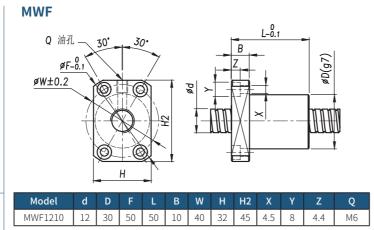
	Stainless steel and other customized materials					
	Surface treatment					
Services beyond standard sizes	Customized Ballscrew Nut and end journal					
0.200	Grease Replacing					
	Maintenance and assembling					
Pleas	se contact the salesman for details					

12 http://www.screw-tech.com


MIF

Model	d	D	L
MIC1205	12	22	30

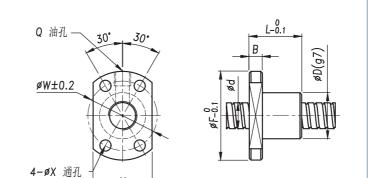
MPF

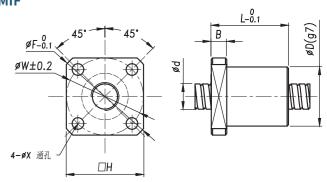


42

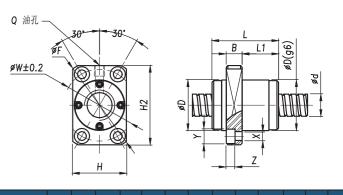
10 32 30

4.5


40


	Nominal	Lead	Accuracy			Basic rate	d load(N)	Axial	Preloading
Model	diameter (mm)	(mm)	grade	Ball Diameter	Circuts	Dynamic load	Static load	clearance (mm)	torque N*cm
		1		1.588	3	780	1600	0-0.005	0.35
		2		1.588	3	3000	6000	0-0.005	0.35
MIF	12	3		1.588	3	3650	9900	0-0.005	0.35
		4		2	3	4100	9900	0-0.005	0.35
		5		2	3	6190	8830	0-0.005	0.35
NALA.	12	4	C3, C5,	2.5	3.5	4100	9900	0-0.005	-
MIA	MIA 12	5		2	3	8010	16440	0-0.005	-
MIC	12	5		2	3	6190	8820	0-0.005	-
MDE	12	8		2.381	2.5	2840	5190	0-0.005	-
MPF	12	10		2.5	2.8	6420	12870	0-0.005	-
MWF	12	10		2.381	2.5	3000	9800	0-0.005	-

The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.

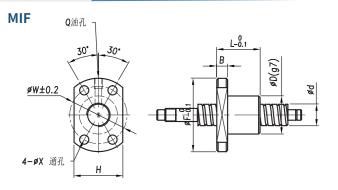

Model	d	D	F	L	В	W	Н	Х	Q
MIF1402	14	21	40	23	6	31	26	5.5	-
MIF1403	14	24	41	32	6	33	28	5.5	-
MIF1404	14	26	45	33	6	36	28	5.5	-
MIF1404B	14	26	45	36	8	35	28	5.5	M5
MIF1405	14	26	46	40	8	36	30	5.5	M5
MIF1602	16	25	43	40	10	35	29	5.5	M6
MIF2002	20	30	50	40	10	40	35	5.5	М6

MIF

Model	d	D	F	L	В	W	Н	Х	Q
MIF1405B	14	25	45.5	38	6	34	34	5	-

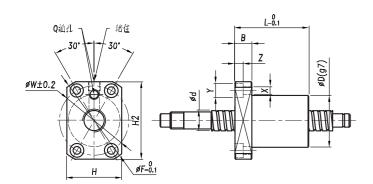
MEF

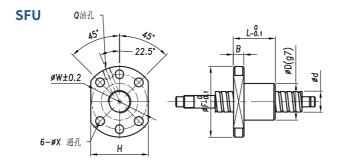
Model	d	D	F	L	L1	В	W	Н	H2	Х	Υ	Z	Q
MEF1616	16	32	57	40	23	10	45	34	50	5.5	9.5	5.5	М6


	Nominal	Load Accuracy			Basic rate	ed load(N)	Axial	Preloading	
Model	diameter (mm)	(mm)	grade	Ball Diameter	Ball Diameter Circuts		Static load	clearance (mm)	torque N*cm
		2		1.588	3	2890	6330	0-0.005	0.5
	14	3	C3, C5,	1.588	3	2900	4600	0-0.005	0.5
MIF	14	4		2.381	3	4500	8600	0-0.005	0.5
	5	, ,	3.175	3	5700	11600	0-0.005	0.5	
	16	2		1.588	3	3730	12000	0-0.005	-
The	e above models	can be made as	s left hand threa	d, right hand thread	l or Bi-directinal(le	ft hand+right hand) thread, specials	sizes can be custom	ized.

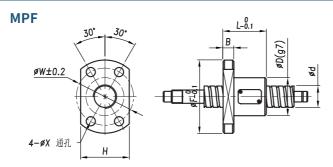
	Performance testing					
Free service	Seletion consultance					
	Design Assistance					
Please contact the salesman for details						

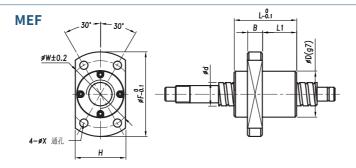
	Stainless steel and other customized materials						
	Surface treatment						
Services beyond standard sizes	Customized Ballscrew Nut and end journal						
3.203	Grease Replacing						
	Maintenance and assembling						
Plea	Please contact the salesman for details						


Bi-directional Ball Screw



Model	d	L	Ball Diameter	Other Parameters
MIF0501	5	1	0.8	Ref P5
MIF0601	6	1	0.8	Ref P5
MIF0801		1	0.8	
MIF0801.5	8	1.5	1.0	Ref P7
MIF0802		2	1.2	
MIF1001		1	0.8	
MIF1001.5		1.5	1.0	
MIF1002		2	1.2	
MIF1002.5	10	2.5	1.5875	Ref P9
MIF1003		3	2.0	
MIF1004		4	2.0	
MIF1005		5	2.0	
MIF1201		1	0.8	
MIF1202		2	1.2	
MIF1202.5	12	2.5	1.5875	Ref P11
MIF1203		3	2.0	
MIF1204		4	2.381	
MIF1401		1	0.8	
MIF1402		2	1.2	
MIF1402.5	14	2.5	1.5875	Ref P13
MIF1403	14	3	2.0	Kei P13
MIF1404		4	2.381	
MIF1405		5	2.381	
MIF1601		1	0.8	
MIF1602	16	2	1.2	Ref P13
MIF1603		3	2.0	


MWF


Model	d	L	Ball Diameter	Other Parameters
MWF1210	12	10	2.381	Ref P11

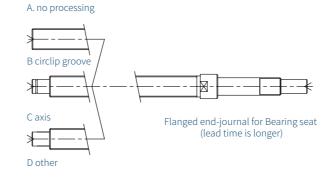
Model	d	L	Ball Diameter	Other Parameters
SFU1604-4		4	2.381	
SFU1605-4	16	5	3.175	
SFU1610-3		10	3.175	
SFU2004-4	20	4	2.381	
SFU2005-4		5	3.175	
SFU2010-4	20	10	4.762	Pls contact salesman for more information
SFU2504-4		4	2.381	more information
SFU2505-4		5	3.175	
SFU2506-4	25	6	3.969	
SFU2508-4		8	4.762	
SFU2510-4		10	4.762	

Model	d	L	Ball Diameter	Other Parameters
MPF0805	8	5	1.5	Ref P7

Model	d	L	Ball Diameter	Other Parameters
MEF0606	6	6	1.2	Ref P5
MEF0808	8	8	1.588	Ref P7
MEF1010	10	10	2	Ref P10
MEF1616	16	16	3.175	Ref P13

1. For the above standard bi-directional nut, you can refer to the technical parameters of right hand thread or left hand thread.

2. Nut size and shape can be customized as per your specific requirement or a detailed drawing. $3. Various\ material\ is\ available\ for\ both\ screw\ and\ nut. Kinds\ of\ surface\ coating\ is\ doable\ according$ to your requirement.

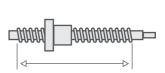

4. Standard ballnut in stock, fast delivery. For customized screw and ballnut, pls contact salesman for exact lead time.

End-journal machining

Typical Journal	Journa	al ends machining Symbol and Feature	Diagram
Ends	Symbol	Features	Diagiaili
Fixed end(F)	F	coupling end+thread lock+bearing block	
	FM	coupling end(axial threaded hole)+thread lock+bearing block	
	FD	coupling end(milling with one cut face)+thread lock+bearing block	
	FH	coupling end(milling with two cut faces)+thread lock+bearing block	
	FX	coupling end(milling square)+thread lock+bearing block	-
	FU	coupling end(key way)+thread lock+bearing block	

Screw Typical Journal		ew Journal ends iining Symbol and Feature	Diagram	
Ends	Symbol Features			
Support end(S)	S	bearing block		
	SM	bearing block+axial threaded hole		
	SD	bearing block+circlip		
	SH	bearing block+milling with one cut face	-	
	SX	bearing block+milling with two cut faces		
	SU	bearing block+milling square	-	
	SC	bearing block+keyway		

Flanged end-journal for Bearing seat



Related accessories

Precautions for use

Do not rotate the nut beyond the effective travel of the ball screw or unscrew the screw. Otherwise, the ball will fall off and return to the damage of the results. Tilting the ball screw may cause the nut to fall off due to dead weight, please note.

Run the nut within the effective stroke Do not remove the nut by yourself

Lithium base genernal greasee No.2 (Chinese Brand Great Wall) Grease can be changed as required.

http://www.screw-tech.com 17 http://www.screw-tech.com/

SCREW TECHNOLOGY CO.,LTD.

Add:No 988,Wsong Road,Wuzhong Disrict,Suzhou,China Tel:+86-0512-66903936

E-mail:IMD@screwtech.cn

Web:http://www.screw-tech.com/

VERSION: V3.2.3 DATE: 20210128