淄博同越电子有限公司 Zibo Tongyue Electronic Co., Itd

<u>Closed loop Hall current sensor</u>

THB_AP15D_Y

Product introduction:

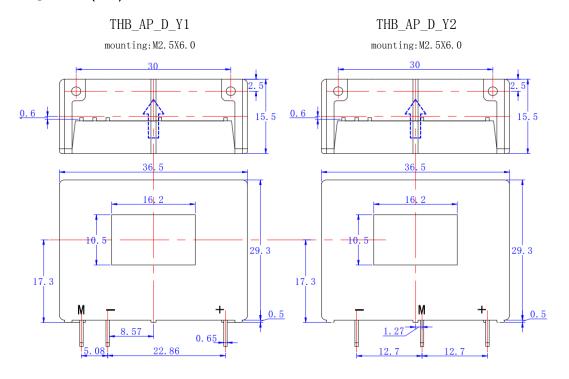
Application:

 \geq

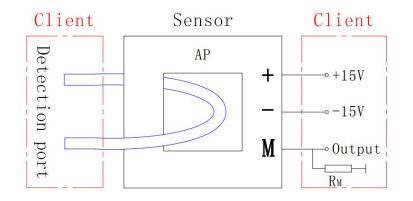
- \geq Hall effect principle — closed loop current sensor; \geq The primary and secondary of the current sensor are \rightarrow insulated and can measure DC, AC, pulse, etc; \geq
- Dual power supply operation: \pm 9V \sim \pm 15V DC \succ \geq
- AC/DC variable speed drive
- Switching power supply (SMPS) Welding power supply reference
- UPS uninterruptible power supply
 - \triangleright Current monitoring and control of induction cooker

电气特性:

Parameter	Symbol	THB50AP	THB100AP	THB125AP	THB200AP
		15D50Y1	15D50Y1	15D125Y2	15D100Y1
Rated current	IPN(A), RMS	50	100	125	200
measuring range	IP(A)	$0 \sim \pm 150$	$0 \sim \pm 300$	$0 \sim \pm 375$	$0 \sim \pm 600$
Turn Ratio	Ns(T)	1000	2000	1000	2000
Rated output current	Isn(mA)	50	50	125	100
Coil internal resistance	Rs(Ω),@+75°C	31	45	31	45
Measure resistance	Rм(Ω),@+75°C,Vc	$0 \sim \text{RMmax} = (($	Vc−0.6V)/ls) -1	Rs; ls=lp/Ns(mA),	See Note 1
Working power supply	Vc(V)		\pm 9V ~ \pm 1	$5 \text{VDC} \pm 5\%$	
Insulation voltage	VD(V)		50/60Hz, 1m	in, 3kV; RMS	
lightning surge	Vw(V)		@ at1.2/5	0µs,<4.5KV	


Note 1: if power supply Vc=15V, I_{Pmax} =150A, Ns=1000T, Rs=31 Ω ; Then the compensation current output by the product is Is=150mA, In order to make the product test to 150A, the maximum sampling resistance $R_{Mmax} = (15-0.6)/0.15-31\Omega = 65\Omega$;

General parameters:


Project	Condition	Data	Company
Accuracy X _G	@ IPN,T=25°C	$<\pm$ 0.5	%
Zero offset current lo	@ lp=0,T=25°C	< ±0.2	mA
Current offset temperature drift \ensuremath{lot}	$@ IP=0, -40 \sim +85 °C$	$< \pm 0.005$	mA∕°C
Linearity ϵ r		≤0.1	%FS
di⁄dt		>100	A∕µs
Response time tra	@ 90% of IPN	<1.0	μs
Operating bandwidth Bw	-3dB	DC-200	kHZ
Working temperature TA		$-40 \sim +85$	°C
Storage temperature Ts		55~+125	°C
Static power consumption Ic	$@\pm 15VDC$	12+ls	mA
Secondary pin Recommended mounting hole size	Pin $(+, -, M)$	>1.2	mm
Droduct woight m	1000T	19	g
Product weight m	2000T	21	g
Shell material	PBT material containing 30% gla	ss fiber, Flame retardant gr	ade:UL94- VO;

Structure diagram: (mm)

Connection diagram:

Remarks:

1. Connect the current according to the calibration direction of the wiring diagram; Pay attention to the positive and negative current;

2. Wiring according to the definition of the calibrated functional pin in the structure diagram;

3. The temperature of primary conductor shall not exceed 100 degrees;

4. When the busbar should be fully filled with primary perforation, the dynamic response and di/dt follow-up accuracy are the best;

5. The above specifications are calibration specifications, and our company can customize products according to customers' requirements.

6. If there are new changes to our products, please do not notice otherwise, and the actual product parameters shall prevail;