

Closed loop Hall current sensor

THB_LA15D_

Product introduction:

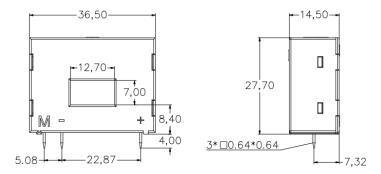
- Power supply: \pm 12V $^{\sim}$ \pm 15V DC
- Hall effect principle closed loop current sensor;
- The primary and secondary of the current sensor are > Switching power supply (SMPS) insulated and can measure DC, AC, pulse, etc;

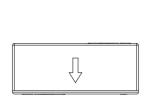
Application:

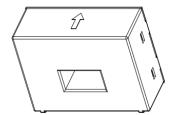
- Application on Inverter
- > Ac/dc variable speed drive
- > UPS uninterruptible power supply
- > Current monitoring and control of induction cooker

Electrical characteristics:

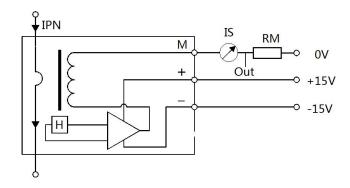
Parameter	Symbol	THB25	THB50	THB75	THB100
		LA15D25	LA15D50	LA15D50	LA15D50
Rated current	IPN(A), RMS	25	50	75	100
Measuring range	lp(A)	$0 \sim \pm 55$	$0 \sim \pm 70$	$0 \sim \pm 105$	$0 \sim \pm 150$
Turn Ratio	Ns(T)	1000	1000	1500	2000
Rated output current	Isn(mA)	$\pm25*$ lp $/$ lpn	$\pm50*$ lp/lpn	$\pm 50*l$ P/lpN	$\pm50*$ lp/lpn
Coil internal resistance	Rs(Ω),@+75°C	30	30	65	112
Measure resistance	Rм(Ω),@+75°C,Vc	[(Vc-2.0V)/(ls*0.001)]-Rs			
Working power supply	Vc(V)		\pm 12V \sim \pm 1	5V DC \pm 5%	
Insulation voltage	$V_D(V)$		50/60Hz, 1min	, 2.5kV; RMS	


General parameters:


Project	Condition	Date	Unit
Accuracy Xg	@ IPN,T=25°C	$<\pm$ 0.5	0/0
Zero offset current lo	<pre>@ IP=0,T=25°C</pre>	$<\pm0.2$	mA
Current offset temperature drift lot	@ $l_P=0,-40\sim+85^{\circ}C$	$< \pm 0.005$	mA/°C
Linearity εr		€0.1	%FS
Follow accuracy di/dt		>100	A/µs
Response time tra	@ 90% of IPN	<1.0	μs
Operating bandwidth Bw	-3dB	DC-200	kHZ
Working temperature TA		$-40 \sim +85$	°C
Storage temperature Ts		55~+125	$^{\circ}\mathrm{C}$
Static power consumption Ic		15+ls	mA
Product weight m		22	g
Shell material	PBT material containing 30% glass	fiber, Flame retardant grad	e: UL94— V0;
Standard	IEC60950-1:2001 E	N50178:1998 SJ20790	-2000


E-mall: zbtongyue@163.com Web: www.zibotongyue.com

Closed loop Hall current sensor


Structural drawing: (mm)

Connection diagram:

Remarks:

- 1. When the measured current passes through the primary pin of the sensor, there is a corresponding current signal output at the output end; (Note: wrong wiring may damage the sensor)
- 2. Products with different rated current can be designed according to the requirements of customers, and the output voltage of the sensor can be selected:
- 3. When the busbar is fully filled with holes, the dynamic performance is the best;
- 4. The temperature of primary conductor shall not exceed 100°C;

Web: www.zibotongyue.com E-mall: zbtongyue@163.com