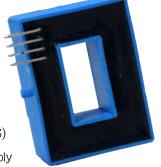
Closed loop Hall current sensor


THB_BP15D_

Product introduction:

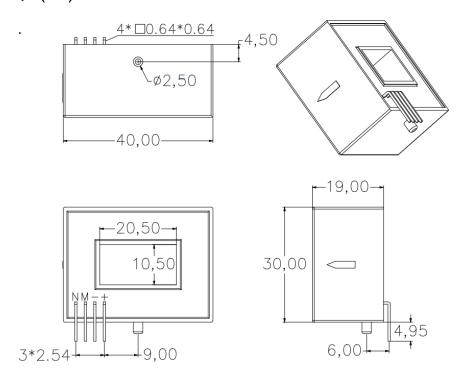
- Hall effect principle closed loop current sensor;
- The primary and secondary of the current sensor are > Ac/dc variable speed drive insulated and can measure DC, AC, pulse, etc;
- Power supply: \pm 12V $^{\sim}$ \pm 15V DC

Application:

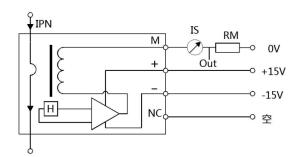
- > Application on Inverter
- Switching power supply (SMPS)
- > UPS uninterruptible power supply
- > Current monitoring and control of induction cooker

Electrical characteristics:

Parameter	Symbol	THB50 BP15D50	THB100 BP15D50	THB200 BP15D100
Rated current	IPN(A), RMS	50	100	200
Measuring range	lp(A)	0~±150	$0 \sim \pm 200$	$0 \sim \pm 300$
Turn Ratio	Ns(T)	1000	2000	2000
Rated output current	Isn(mA)	$\pm50*$ lp $/$ lpn	$\pm50*$ lp/lpn	$\pm100*$ Ip $/$ Ip $_{ m IN}$
Coil internal resistance	Rs(Ω),@+75°C	30	50	50
Measure resistance	Rм(Ω),@+75°C,Vc	[(Vc-2.0V)/(Is*0.001)]-Rs		
Working power supply	Vc(V)	\pm 12V \sim \pm 15V DC \pm 5%		
Insulation voltage	VD(V)	50/60Hz, 1min, 2.5kV; RMS		


General parameters:

Project	Condition	Data	Unit
Accuracy X _G	@ IPN,T=25°C	< ±0.5	0/0
Zero offset current lo	@ $l_{P}=0, T=25$ °C	$< \pm 0.2$	mA
Current offset temperature drift lot	@ $l_P=0,-40\sim+85^{\circ}C$	$< \pm 0.005$	mA/°C
Linearity εr		≤0.1	%FS
Follow accuracy di/dt		>100	A/µs
Response time tra	@ 90% of IPN	<1.0	μs
Operating bandwidth Bw	-3dB	DC-200	kHZ
Working temperature TA		−40 ~ +85	$^{\circ}\mathrm{C}$
Storage temperature Ts		55~+125	$^{\circ}\mathrm{C}$
Static power consumption lc		15+ls	mA
Product weight m		50	g
Shell material	PBT material containing 30%	glass fiber, Flame retardant	grade: UL94-V0;
Standard	IEC60950-1:2001	EN50178:1998 SJ20	790—2000


E-mall: zbtongyue@163.com Web: www.zibotongyue.com

Structure diagram: (mm)

Connection diagram:

Remarks:

- 1, When the measured current passes through the primary pin of the sensor, there is a corresponding current signal output at the output end; (Note: wrong wiring may damage the sensor)
- 2, Products with different rated current can be designed according to the requirements of customers, and the output voltage of the sensor can be selected;
- 3, When the busbar is fully filled with holes, the dynamic performance is the best;
- 4, The temperature of primary conductor shall not exceed $100^{\circ}C$;

Web: www.zibotongyue.com E-mall: zbtongyue@163.com