

Open loop Hall current sensor

THD_BS15D4H

Product introduction:

- Power supply: \pm 12V $^{\sim}$ \pm 15V DC
- Hall effect principle open loop current sensor;
- The primary and secondary of the current sensor are > Switching power supply (SMPS) insulated and can measure DC, AC, pulse, etc;

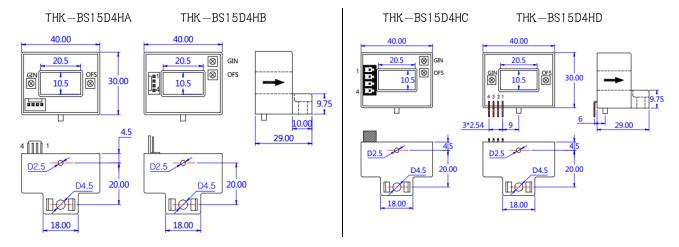
Application:

- > Application on Inverter
- > AC/DC variable speed drive
- > UPS uninterruptible power supply
- > Current monitoring and control of induction cooker

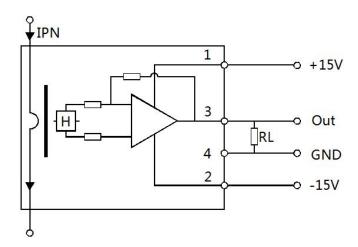
Electrical characteristics:

Parameter	Symbol	THK50 BS15D4H	THK 100 BS15D4H	THK200 BS15D4H	THK300 BS15D4H	THK 400 BS15D4H	THK 600 BS15D4H
Rated current	IPN(A)	50	100	200	300	400	600
Measuring range	lp(A)	0~±150	0~±300	0~±600	0~±900	0~±900	$0 \sim \pm 900$
Output voltage	Vo(V)	\pm 4.0*(IP/IPN),DC					
Load resistance	$RL(k\Omega)$	>1.0					
Working power supply	Vc(V)	$\pm 12V \sim \pm 15V DC \pm 5\%$					
Insulation voltage	$V_D(V)$	50/60Hz, 1min, 2.5kV; RMS					

General parameters:


Project	Condition	Date	Unit
Accuracy Xg	@ IPN,T=25°C	< ± 0.5	0/0
Offset voltage Voe	@ Ip=0,T=25°C	<±20	mV
Voltage offset temperature drift Vot	@ $l_P=0, -40 \sim +85$ °C	$<\pm$ 1.0	mV/°C
Hysteresis offset voltage Von	@ lp=0,after 1*lpN	<±20	mV
Linearity εr		€0.5	%FS
Follow accuracy di/dt		>100	A/µs
Response time tra	@ 90% of IPN	<3.0	μs
Operating bandwidth Bw	-3dB	DC-20	kHZ
Working temperature TA		−40 ~ +85	$^{\circ}\mathrm{C}$
Storage temperature Ts		$-55 \sim +125$	$^{\circ}\mathrm{C}$
Static power consumption lc		15+ls	mA
Product weight m		65	g
Shell material	PBT material containing 30% gla	ass fiber, flame retardant grade	e: UL94- V0;
Standard	IEC60950-1:2001	EN50178:1998 SJ20790	-2000

E-mall: zbtongyue@163.com Web: www.zibotongyue.com



Open loop Hall current sensor

Structural drawing: (mm)

Connection diagram:

Remarks:

- 1. When the measured current passes through the primary pin of the sensor, there is a corresponding voltage signal output at the output end; (Note: wrong wiring may damage the sensor)
- 2. Products with different rated current can be designed according to the requirements of customers, and the output voltage of the sensor can be selected;
- 3. When the busbar is fully filled with holes, the dynamic performance is the best;
- 4. The temperature of primary conductor shall not exceed 100°C;

Web: www.zibotongyue.com E-mall: zbtongyue@163.com