

Closed loop Hall current sensor

THB_DS3S6

Product introduction:

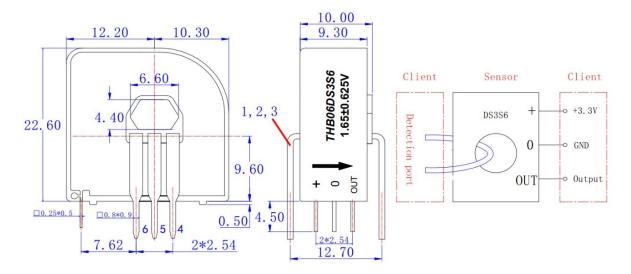
- ➤ Single power supply: +3.3v DC
- > Customized according to requirements;
- > Both perforation and PCB measurement;
- ➤ Hall effect principle closed loop current sensor;
- > The output is a voltage signal with polarity and no negative value; >
- > It can measure the current of DC, AC, pulse and various irregular > waveforms under the condition of electrical isolation;

Application:

- > Application on Inverter
- > Standard battery monitoring
- Variable speed drive applications
- UPS uninterruptible power supply
- Solar power management system
 - Drive control of variable frequency household appliances

Electrical characteristics:

Parameter	Symbol	THB06DS3S6	THB15DS3S6	THB25DS3S6	THB50DS3S6
Rated current	IPN(A)	06	15	25	50
Measuring range	IP(A)	$0 \sim \pm 12$	$0 \sim \pm 30$	$0 \sim \pm 50$	0~±100
Measure resistance	$ ext{RM}(\Omega)$	$100\pm0.1\%$	$50\pm0.1\%$	$25\pm0.1\%$	$25\pm0.1\%$
Sensitivity	G(mA/A)	104.16	41.67	25	12.5
Output voltage	Vo(V)	$1.65 \pm 0.625*(IP/IPN)$			
Working power supply	Vc(V)	$+3.3V$ DC $\pm5\%$			
Insulation voltage	$V_D(V)$		50/60Hz, 1m	in, 4kV; RMS	
lightning surge	$V_w(V)$		@ at1.2/5	0μs,>8.0kV	
Output load capacitance	CL(nF)		<10nF @	DVo∼GND	


General parameters:

Project	Condition	Date	Unit
Accuracy X _G	@ IPN,T=25°C	$<\pm$ 0.7	%
Zero offset voltage Voe	@ $l_{P}=0, T=25^{\circ}C$	<±20	mV
Current offset temperature drift V_{OT}	@ $lp=0,-40\sim+85^{\circ}C$	< ±0.5	mV/°C
Linearity εr		≤0.1	%FS
Follow accuracy di/dt		>50	A/μs
Response time tra	@90% of IPN	<1.0	μs
Operating bandwidth Bw	-1dB	DC-200	kHZ
Creepage distance dcp	Shell surface	15.4	mm
Working temperature TA		-40 ~ +85	°C
Storage temperature Ts		$-55 \sim +125$	°C
Static power consumption Ic		10+ls	mA
Secondary pin mounting hole size	(+,0,OUT)	>1.1	mm
Primary pin mounting hole size	1,2,3,4,5,6	>1.5	mm
Product weight m		10	g
Shell material	PBT material containing 30% gla	ss fiber, Flame retardant grade	: UL94- V0;
Standard	IEC60950-1:2001	EN50178:1998 SJ20790	-2000

Web: www.zibotongyue.com E-mall: zbtongyue@163.com

Closed loop Hall current sensor

Structural drawing: (mm)

Connection diagram:

Primary wire turn	Primary rated current (A)	Output voltage (V)	Primary resistance $(m\Omega)$	Primary inductance (µH)	Enter PIN connection
1	$\pm 6 \ (\pm 15, \pm 25, \pm 50)$	1.65±0.625	0.18	0.013	6 5 4 OUT O O O IN 1 2 3
2	±3 (±7.5, ±12.5, ±25)	1.65±0.625	0.81	0.05	6 5 4 OUT O O O IN 1 2 3
3	$\pm 2(\pm 5, \pm 8.3, \pm 16.6)$	1.65±0.625	1.62	0.12	6 5 4 OUT 0 0 IN 1 2 3

This product has two input methods:

1) Cable perforation input; 2) PCB input mode;

Suitable current input mode can be selected according to needs;

A: For the cable current input mode, the cable should pass through the hole of the Hall current sensor; Take thb06ds3s6 as an example. If the perforation of the cable is 1 turn, the rated current is 6A; if the perforation of the cable is 2 or 3 turns, the rated current is 3A or 2A; If you follow this input method, please do not use PCB input method at the same time;

B: For PCB input mode, the input turns and rated input current parameters are determined according to the connection mode of the input pin.

There are three ways to input pin: 1t, 2T, 3T; The corresponding input rated current is: 6a, 3a, 2A; See wiring diagram for specific connection mode; When using this method, do not use the perforation input method at the same time;

Web: www.zibotongyue.com E-mall: zbtongyue@163.com

Closed loop Hall current sensor

Relationship between input current and output voltage:

Taking THB25DS3S6 as an example, the relationship between input current and output voltage is shown in Table 1 and Fig.1 below

Table 1:

Input current(A)	-50	-25	0	25	50
Output voltage (V)	0.4	1.025	1.65	2.275	2.9

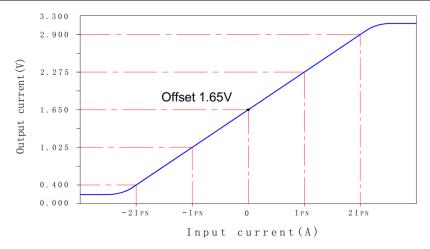


Fig. 1 Relation between the input current (DC) and output voltage (DC)

Remarks:

- 1. Connect the current according to the calibrated direction of the wiring diagram; Pay attention to the positive and negative current;
- 2. Wiring according to the definition of the calibrated functional pin in the structure diagram;
- 3. The temperature of primary conductor shall not exceed 100 $^{\circ}C$;
- 4. When the busbar should be fully filled with primary perforation, the dynamic response and di/dt follow—up accuracy are the best;
- 5. The above specifications are calibration specifications, and our company can customize products according to customers' requirements.
- 6. If there are new changes in our products, please do not notice, and the actual product parameters shall prevail:

Web: www.zibotongyue.com E-mall: zbtongyue@163.com