

LOREN INDUSTRY CO., LIMITED

Micro Mano Bubble Generator Professional Designing & Fabrication

Full River&Decrative Waste Water Purifier, and Body Message
Utilization Expert and Practioners

Loren—The Most Professional Customized Equipment and Solution Provider

Website: www.lorenindustry.com

Free Service Hotline: : +86-13921106199 Mail: Lorenindustry@163.com

Definition of Micro Mano Bubble Generator

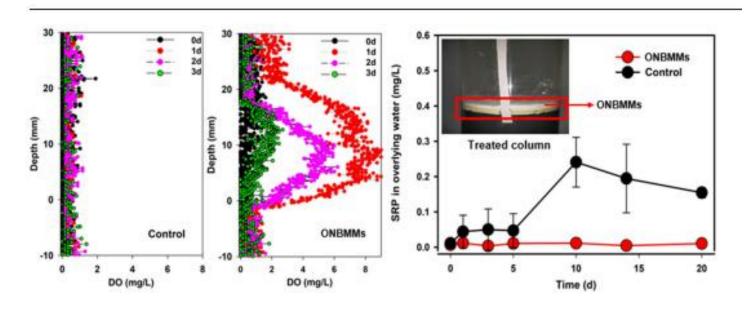
It is a New Type of High-efficiency Water Aerator and Body Message Device which is consisted of Micro-Nano Bubble generator, Diffusion Device & Control System or Ion Exchange Device

Pricinpal of Micro Mano Bubble Generator

Water And Air Are Highly Compatible And Mixed, Ultrasonic Cavitation Dispersion Releases High-Density, Uniform Micro-Nano Bubbles, And The Air Is Initially Compressed Into a Large Amount Of 0.25 Mm Bubbles, And Then Use The Release System To Highly Disperse The Gas And Liquid Phases In a Semi-Vacuum Condition To Produce Micro-Sized Bubbles And Nano-Sized Bubbles With a Diameter Of Less Than 3µm, Which Are Released Into The Water Body To Form a Milky White Gas-Liquid Mixture Body, Achieve The Effect Of Rapid Oxygenation. The Technology Has Obtained 35 National Patents, Has Major Innovations, And Has Developed a Series Of Special Equipment For River Treatment. The High-Density Bubbles Released By The Equipment Surround The Pollutants And Eventually Burst Into The Water. The Bubbles Are Completely Dissolved In The Water, Effectively Degrading The Pollutants In The Water. Micro-Nano Bubbles Can Provide Dissolved Oxygen To The Water, Inhibit The Increase In Sediment, Digest The Existing Sludge, And Create a Good Sediment Environment. Spherical Nanobubbles Suspended In Liquid With Diameters Between 200 Nanometers And 3 Microns. The Surface Of The Bubble Is Rigid, Similar To a High-Pressure Balloon, And Is Not Easy To Burst. Play The Role Of High-Efficiency Aeration, Effective Algae Removal, Sediment Digestion, And Circulating Water.

Technique Feature of Micro Mano Bubble Generator

- (1) Generate a large number of strong oxidizing free radicals OH, which can perform high-strength oxidation of organic pollutants to form the final product CO2, H20;
- (2) Degrading pollutants from macromolecular structures (opening loops) to small molecular structures, making it easier for indigenous microorganisms to eat and use, and improve biochemical degradation efficiency;
- (3) High efficiency of phosphorus and ammonia removal, ammonia nitrogen removal rate is 85%, total phosphorus is reduced by 65%;
- (4) Improve dissolved oxygen and transparency, promote autonomous restoration of ecosystems, and improve water self-purification capabilities;


Technique Feature of Micro Mano Bubble Generator

- (5) Reduce water molecular cluster associations and activate water bodies;
- (6) Activate "indigenous microorganisms" to improve biochemical degradation efficiency;
- (7) Quickly kill cyanobacteria and inhibit cyanobacteria by reducing the content of nutrients such as nitrogen and phosphorus;
- (8) Degrade the floating mud layer, promote the mineralization of the surface layer of the bottom mud, and inhibit the release of pollutants from the bottom mud to the water body.

Purification Mechanism of Micro Mano Bubble Generator

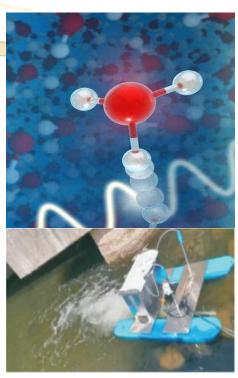
- 1.COD Removal & Purification Mechanism
- 2.NH3-N Removal & Purification Mechanism
- 3. Total Phosphorus Removal & Purification Mechanism
- 4. Sediment Removal & Reduction Mechanism

Widely Applicant of Micro Mano Bubble Generator

Widely Applicant

- -Deep Water Oxygenation
- -Farming Industry
- -Aquaculture
- -Algae Or Weed Treatment
- -Black & Smelly River Treatment
- -University Teaching Modual Display or Trainning
- -Intermediate Test
- -Compacted Comprehensive Treatment Unit
- -Swimming Pool
- -Landscape Water Decoration Or Treatment
- -Body Message in Some SPA Place
- -Home Water Foot or Body Message
- -Femal Beautification
- -Other Applicant

Main Technique Parameter & Model Selection


Main Parameter of The Micro Mano Bubble Generator

Model	Capacity (m3/h)	Power (Kw)	Dimension (mm)	Comment	
LNG-0.2	0.22	0.125	300*140*280	Potable Style 220V	
LNG-2.0	2.0	0.30	600*300*400		
LNG-4.0	4.0	0.55	600*300*600	Float Style or Floor	
LNG-6.0	6.0	0.75	600*500*600	Mounted , Can Optional Choose Aerator or Odor	
LNG-10	10	1.1	600*500*800		
LNG-20	20	2.2	980*540*1860	Float Style or Floor Mounted , Can Optional Choose Aerator or Odor or Chemical Dosing	
LNG-30	30	3.0	980*540*1860		
LNG-40	40	5.5	1200*600*1400		
LNG-60	60	5.5	1200*600*1500		
LNG-80	80	7.5	1200*600*1650		
LNG-100	100	11	1200*600*1700	Floor Mounted , Can Optional Choose Aerator	
LNG-120	120	15	1800*1000*1800		
LNG-160	160	18	1800*1000*1800	or Odor or Chemical	
LNG-200	200	22	1800*1000*1800	Dosing	

Areator Main Technique Parameter & Model Selection

Main Parameter of The Maching Areator System

Model	Capacity (m3/h)	Power (Kw)	Cover Area (m)	Comment	
LSA-1.2	30	1.2	40	Surge Aerator	
LWA-1.2	30	1.2	40	Water Spray Aerator	
LWA-2.2	60	2.2	60	Water Spray Aerator	
LIA-1.2	30	1.2	40	Impeller Aerator	
LOA-0.75	25	0.75	30	Ordinary SprayFountain	
LCA-0.75	30	0.75	30	ColorSprayFountain	
LOA-2.2	60	2.2	60	Ordinary SprayFountain	
LCA-2.2	60	2.2	60	ColorSprayFountain	
LMA-3.0	70	3.0	80	MicroPorous Aeration	
LMA-5.5	80	5.5	90	MicroPorous Aeration	
LTA-1.1	50	1.1	100		
LTA-1.5	80	1.5	130	Thrust flow Aerator	
LTA-2.2	150	2.2	160	I nrust flow Aerator	
LTA-3.0	200	3.0	180		
LTA-4.0	280	4.0	200		
LIE-3.0	100	3.0	70	Oxygen Ion Exchanger	

Areator Main Technique Parameter & Model Selection

Main Parameter of Submersible Areator

Model	Capacity (m3/h)	Power (Kw)	Cover Area (m)	Comment
LDA-1.1	10	1.2	40	
LDA-1.5	15	1.5	60	
LDA-2.2	22	2.2	100	For Increasing
LDA-3.0	30	3.0	140	Oxygen
LDA-4.0	40	4.0	180	
LDA-5.0	50	5.0	240	

Solar Streaming Aerator

Model	Capacity (m3/h)	Power (Kw)	Cover Area (m)	Comment
LDA-2.2	150	2.2	60	For Increasing
LDA-3.0	180	3.0	100	Oxygen
LDA-4.0	210	4.0	150	

Roots Blower Main Technique Parameter & Model Selection

Main Parameter of High Pressure Root Fan

Model	Capacity (m3/h)	Powe r (Kw)	Cover Area (m)	Comment
LRB-0.30	80	0.3	100	
LRB-0.50	98	0.5	150	
LRB-0.83	120	0.83	200	
LRB-1.10	130	1.1	300	For Increasing
LRB-1.50	140	1.5	350	Oxygen
LRB-2.20	220	2.2	380	
LRB-2.55	275	2.55	400	
LRB-3.00	310	3.0	450	

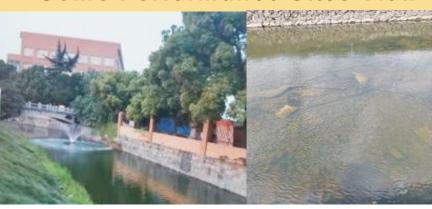
Reactor Main Technique Parameter & Model Selection

Main Parameter of Integrated Reactor

Model	Capacity (m 3/d)	Power (Kw)	Dimension (mm)	Comment
LIR-8	50	12	3500*2200*2000	For Increasing
LIR-20	100	18	3500*2200*2000	Oxygen & Impurities
LIR-40	200	25	4000*2200*2000	Purification
LIR-80	1100	45	4000*2200*2000	
LIR-200	1500	70	4500*2200*200	

Reactor Main Technique Parameter & Model Selection

Photo of Integrated Reactor



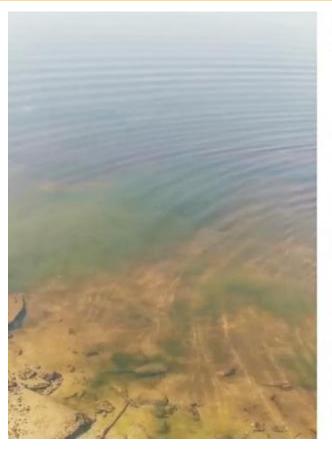
Some Performance Sites View

Ningbo Dirty River Before Nano Generator

Cleaned River View After Nano Generator

Nano Generator System Disposal Result Comparison

Item	Standard V	Before	After
Ph	6-9	9	6.8
COD5	40 mg/l	150 mg/l	2 mg/l
Dissolved Oxygen	2 mg/l	0.3 mg/l	8 mg/l
NH3-N	2 mg/l	11 mg/l	1.2 mg/l
Total Phosphorus	0.2 mg/l	7 mg/l	0.2 mg/l



Ozone Oxygen Enriched Nano Bubble Generator Running Site

Some Performance Sites View

Ozone Oxygen Enriched Nano Bubble Generator Disposal View

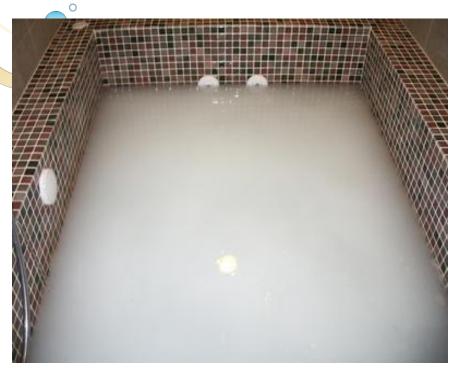
Some Performance Sites View

Yangzi River Hubei Stage 50 sets Nano Generators Running Site

Intelligent Solar Energy Time Fixed Spraying Foutain



Qingdao Dairy Cow Milk Liquid Site for This Nano Generator System


Some Performance Sites View

Micro-Nano Oxygen-enriched Bubble Conservation Shower

Micro-Nano Oxygen-enriched Bubble Conservation Shower

Some Performance Sites View

Micro-Nano Oxygen-enriched Bubble Direct Drinking Water Machine

Thank for your Kind Trust

