

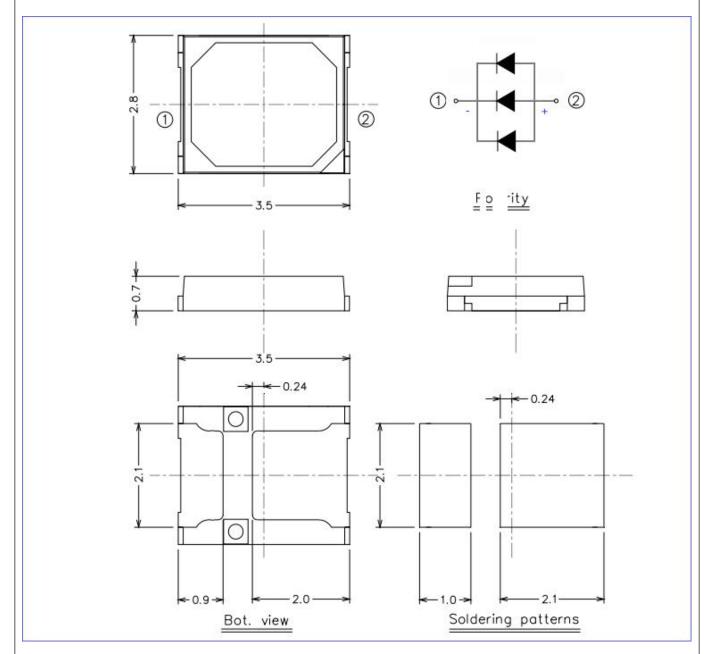
TOP LED:2835FIRC-88ES14I300-3P (2835SMD LED-3chips IR LED)

CUSTOMER APPOVED SIGNATURES	SALES	APPROVED	CHECKED	PREPARED
	APPROVED	BY	BY	BY

1. Features

• Color:880nm IR LED

• Lens: Water clear


• High reliability, High radiant intensity

Low forward voltage

• Meet ROHS, Green Product

• Compatible With Infrared Reflow Solder And Wave Solder Process

2. Package Profile & Soldering PAD Suggested

Notes: 1. All dimensions are in millimeters;

2. Tolerance is \pm 0.10 mm unless otherwise noted.

3. Absolute Maximum Ratings At Ta=25℃

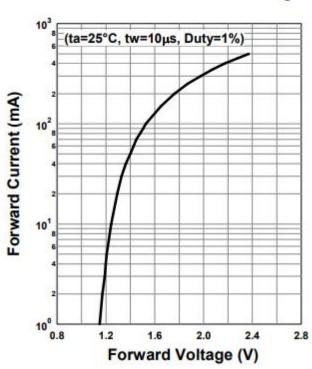
Parameter	Symbol	Rating	Unit	
Power Dissipation	Pd	600	mW	
Pulse Forward Current	IFP	1500	mA	
Forward Current	IF	300	mA	
Reverse Voltage	VR	5	V	
Junction Temperature	Tj	115	°C	
Operating Temperature	Topr	-40 ~ +80	°C	
Storage Temperature Range	Tstg	-40 ~ +100		
Soldering Temperature	Tsol	260	°C	
Electro-Static-Discharge(HBM)	ESD	1000	V	
Service life under normal conditions	Time	80000	Н	
Warranty	Time	5	Years	
Antistatic bag	Piece	4000	Bag	

^{*}Pulse Forward Current Condition:Duty 1% and Pulse Width=10us.

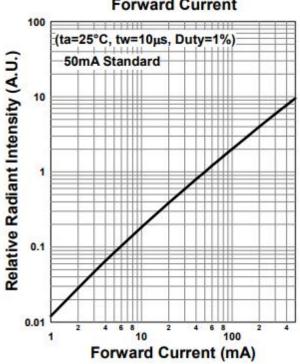
^{*}Soldering Condition:Soldering condition must be completed with 3 seconds at 260 $^{\circ}\text{C}$

4. Electrical Optical Characteristics At Ta=25℃

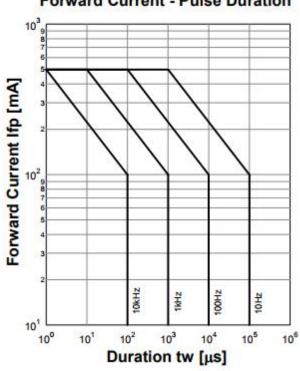
Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
Radiant Intensity	Ee	20		30	mW/sr	IF=60mA
		50	70			IF=150mA
		90		120		IF=300mA
Viewing Angle	201/2		120		deg	IF=150mA
Peak Wavelength	λр	880	895	910	nm	IF=150mA
Spectral Bandwidth	Δλ		50		nm	IF=150mA
Forward Voltage	VF	1.2	1.3	1.6	V	IF=60mA
		1.3	1.5	1.7		IF=150mA
		1.6	1.8	2.0		IF=300mA
Reverse Current	IR			5	uA	VR=5V

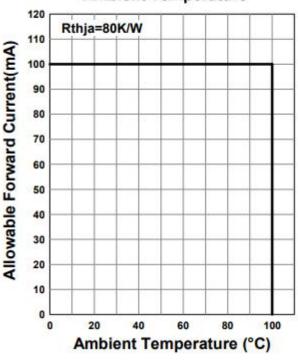

^{*}Luminous Intensity is measured by ZWL600.

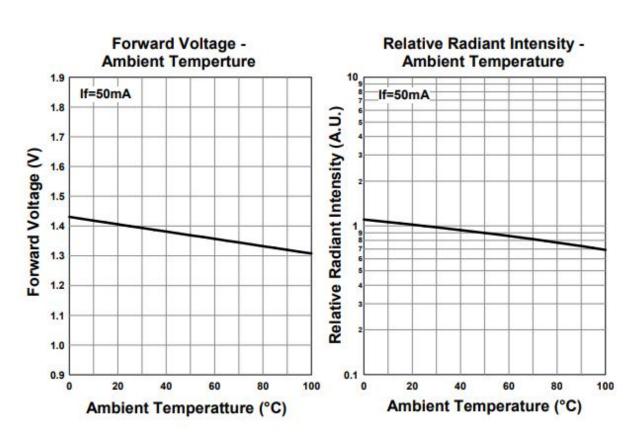
 $^{*\}theta1/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

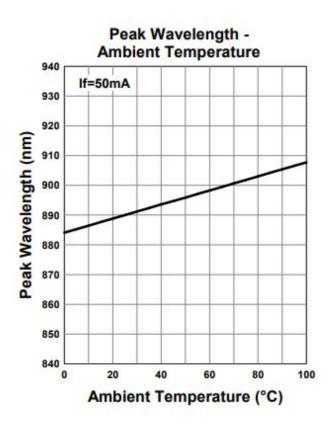

 $^{^*\}lambda P$ is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

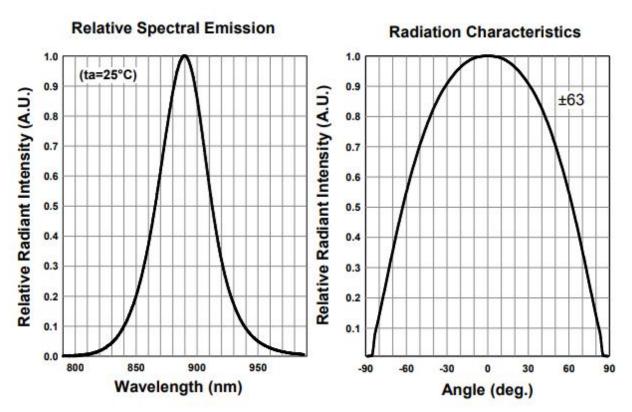
5. Typical Electrical-Optical Characteristics Curves

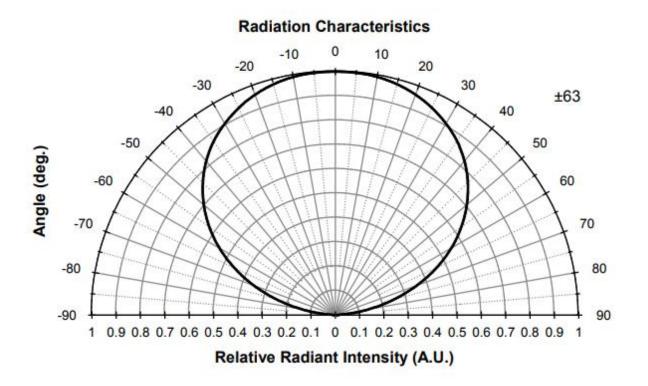


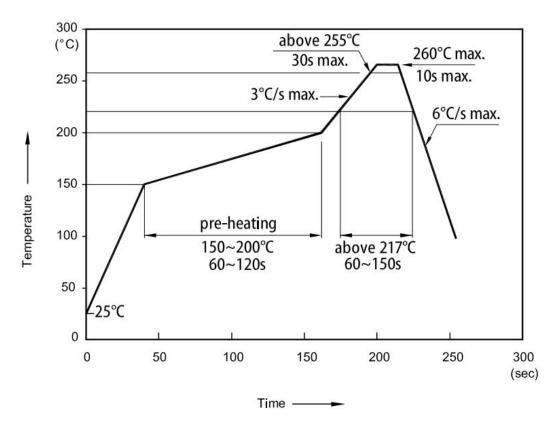

Relative Radiant Intensity -Forward Current




Forward Current - Pulse Duration


Allowable Forward Current -Ambient Temperature





6. Cautions

Reflow soldering profile for LEAD-FREE SMD process

Notes:

- 1. Don't cause stress to the LEDs while it is exposed to high temperature.
- 2. The maximum number of reflow soldering passes is 2 times
- 3. Reflow soldering is recommended. Other soldering methods are not recommended as they mightcause damage to the product

HANDLING PRECAUTIONS

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Althouth its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.

2. Do not directly touch or handle the silicone lens surface.It may damage the internal circuitry.

3. Do not stack together assembled PCBS containing exposed LEDS.Impact may scratch the silicone lens or damage the internal circuitry.

- 4. 4-A The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks
- 4-B A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup
 - 4-C The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production
 - 4-D As silicone encapsulation is permeable to gases, some corrosive substances such as H2S might corrode silver plating of leadframe. Special care should be taken if an LED with Silicone encapsulation is to used near such substances.

- 5. Avoid continued exposure to the condensing moisture environment and keep the product away from rapid transitions in ambient temperature.
- 6. Product in the original sealed package is recommended to be assembled within 24 hours of opening.