YZPST. Yangzhou Positioning Tech. Co., Ltd P/N:YZPST-M1A045170L

Silicon Carbide Power MOSFET

(N Channel Enhancement Mode)

Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low On-Resistance
- Easy to Parallel and Simple to Drive
- Resistant to Latch-UP
- Halogen Free, RoHS Compliant

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Applications

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC Converters
- Motor Drive

V _{DS} =	=	1700V
I _D (T _C =25 °C) =	=	85 A
R _{DS(on)} =	=	34 mΩ

Package

Part Number	Package	Marking
M1A045170L	TO-247-4L	M1A045170L

Maximum Ratings (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain-Source Voltage	1700	V	$V_{GS}=0~V,~I_{D}=100~\mu A$	
V_{GSmax}	Gate-Source Voltage	-10/+25	V	Absolute maximum values	
V_{GSop}	Gate-Source Voltage	-5/+20	V	Recommended operational values	
I _D	Continuous Drain Current	85 55	А	$V_{GS} = 20 V, T_C = 25^{\circ}C$ $V_{GS} = 20 V, T_C = 100^{\circ}C$	_
$\mathbf{I}_{D(pluse)}$	Pulsed Drain Current	160	А	Pulse width t_P limited by T_{jmax}	
P _D	Power Dissipation	520	W	$T_{C} = 25^{\circ}C, T_{J} = 150^{\circ}C$	
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to 175	°C		
TL	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
M _d	Mounting Torque	1 8.8	Nn lbf-in	M3 or 6-32 screw	

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V _{(BR)DSS}	Drain Drain-Source Breakdown Voltage	1700		-	V	V _{GS} = 0 V, I _D = 100 μA	
		2.0	2.6	4	V	V _{DS} = V _{GS} , I _D = 18mA	
$V_{GS(th)}$	Gate threshold Voltage		1.9		V	V _{DS} = V _{GS} , I _D = 18mA, T _J =150°C	
I _{DSS}	Zero Gate Voltage Drain Current		2	100	μA	V _{DS} = 1700 V, V _{GS} = 0 V	
\mathbf{I}_{GSS}	Gate Source Leakage Current			2	uA	$V_{GS} = 20 V, V_{DS} = 0 V$	
_	Drain-Source		34	60		V _{GS} = 20 V, I _D = 50 A	
R_{DSON}	On-State Resistance		66		mΩ	V _{GS} = 20 V, I _D = 50A, T _J =150°C	
			16			V _{GS} = 20 V, I _D = 50A	
g_{fs}	Transconductance		19		S	V _{GS} = 20 V, I _D = 50A, T _J =150°C	
C _{iss}	Input Capacitance		4078				
C _{oss}	Output Capacitance		167		pF	V _{DS} =1000V,Tj=25°C,f=1MHz	
C _{rss}	Reverse Capacitance		39		P		
E _{oss}	C _{oss} Stored Energy		203		μĴ		
E _{on}	Turn on Switching Energy		1.9			V _{DS} = 1200 V, V _{GS} = -5/20 V,	
E _{off}	Turn off Switching Energy		0.3		mJ	$I_D = 50A, R_{g(ext)} = 2.5\Omega, T_{J} = 150 °C$	
t _{don}	Turn on delay time		21				
t _r	Rise time		46			$V_{DS} = 1200 V$, $V_{GS} = -5/20 V$,	
t _{doff}	Turn off delay time		50		ns	$I_{D} = 50A, R_{g(ext)} = 2.5\Omega$	
t _f	Fall time		19				
R_{gint}	Internal Gate Resistance		2.6			V _{AC} =25mV, f=1MHz	
Q _{gs}	Gate to Source Charge	1	44				
Q _{gd}	Gate to Drain Charge		84		nC	$V_{DS} = 1200 V, V_{GS} = -5/20 V,$	
Qg	Total Gate Charge		248			l₀ = 50A	

Electrical Characteristics (Tc = 25°C unless otherwise specified)

Electrical Characteristics (Tc = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V	Diada Farward Valtage		6.1	-	V	V _{GS} = -5 V, I _{SD} = 25 A	
V_{SD}	Diode Forward Voltage		5.2		v	V _{GS} = -5 V, I _{SD} = 25 A,T _J =150°C	
Is	Continuous Diode Forward Current			75	А	V _{GS} = -5V, T _C =25°C	
t _{rr}	Reverse Recovery Time		126		ns		
Q _{rr}	Reverse Recovery Charge		1360		nC	V _R = 1200 V, V _{GS} = -5V, I _D = 50A, di/dt=1400A/µS,, T _J =150°C	
I _{rrm}	Peak Reverse Recovery Current		19		А		

Thermal Characteristics

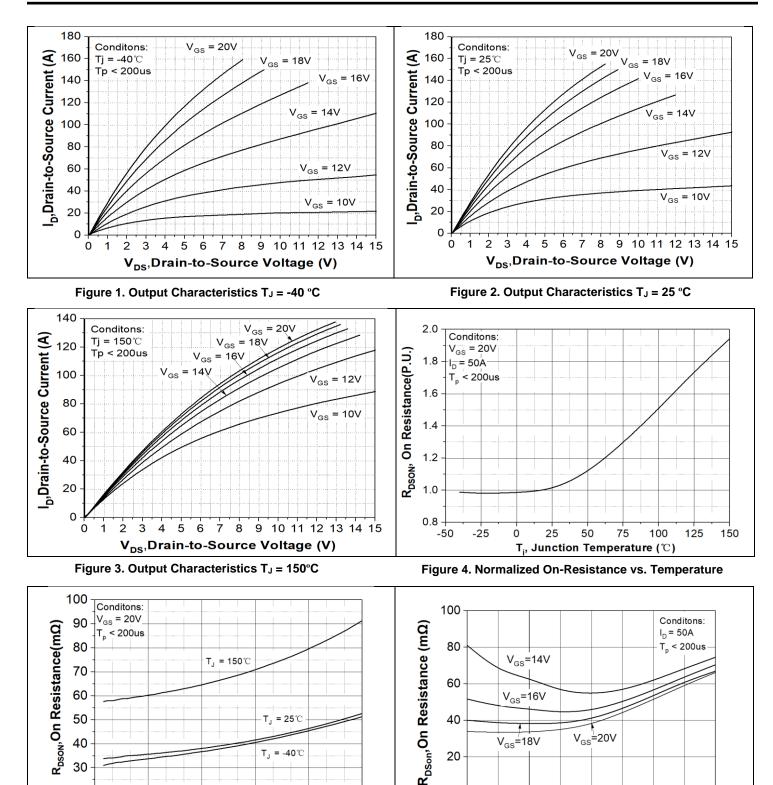
Symbol	Parameter		Unit	Note
R₀JC	Thermal Resistance(Junction to Case)	0.24		
R₀JA	Thermal Resistance From Junction to Ambient	30	°C/W	

50

40

30 20

0


30

60

Figure 5. On-Resistance vs. Drain Current

For Various Temperatures

I_{DS}, Drain to Source Current (A)

3/8

40

20

0

-50

-25

V_{GS}=18V

0

25

V_{GS}=20V

50

Figure 6. On-Resistance vs. Temperature

For Various Gate Voltage

T₁, Junction Temperature ($^{\circ}$ C)

75

100 125

150

T_ = 25℃

T_J = −40°C

120

150

90

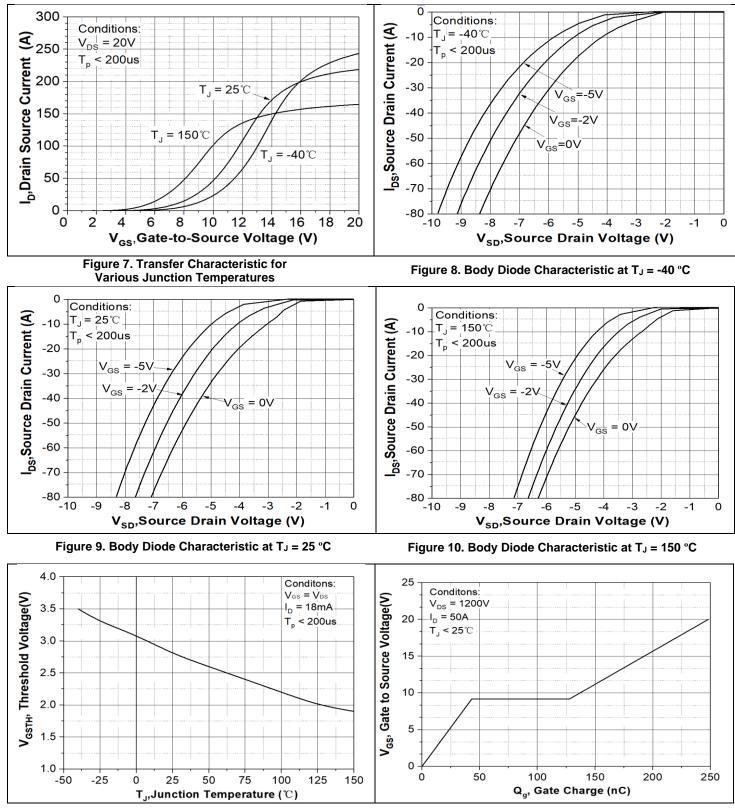
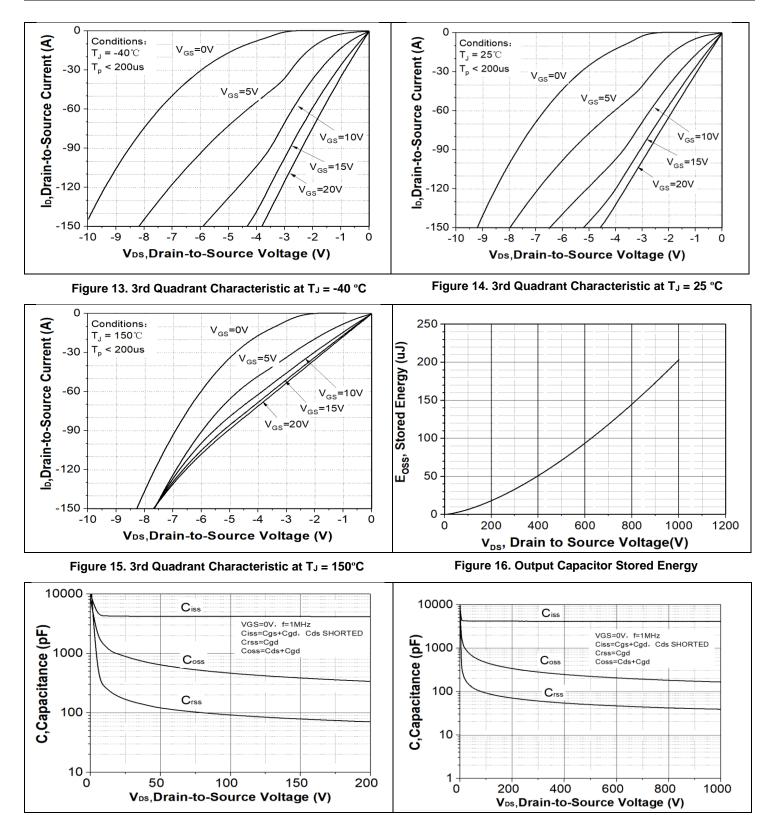



Figure 12. Gate Charge Characteristic

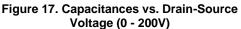
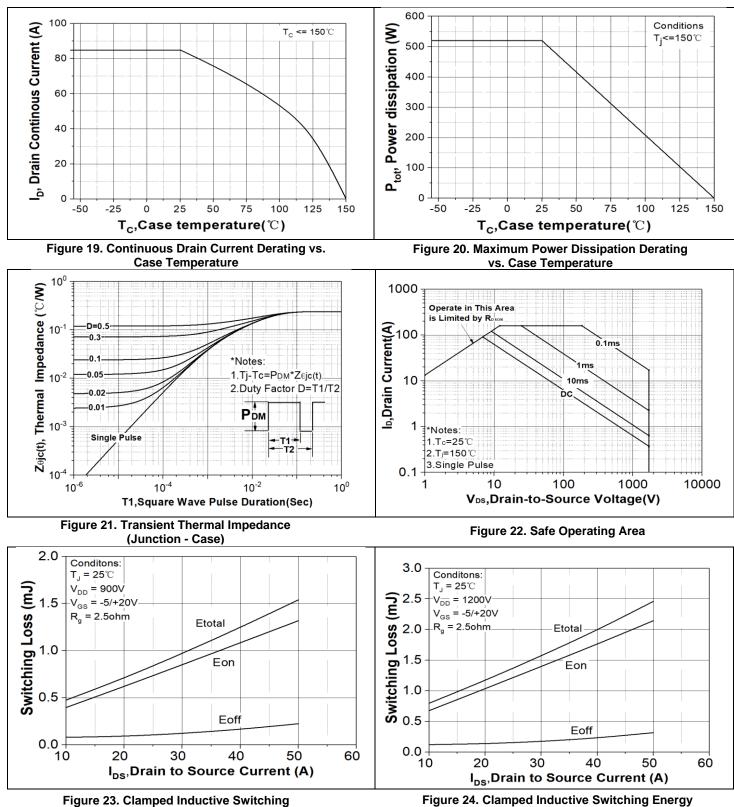



Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Energy vs. Drain Current (V_{DD} = 900V)

e 24. Clamped Inductive Switching Energ vs. Drain Current (V_{DD} = 1200V)

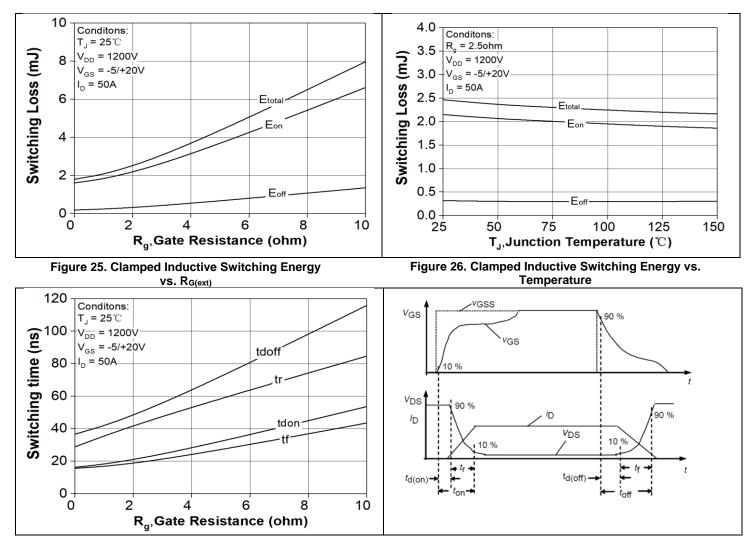
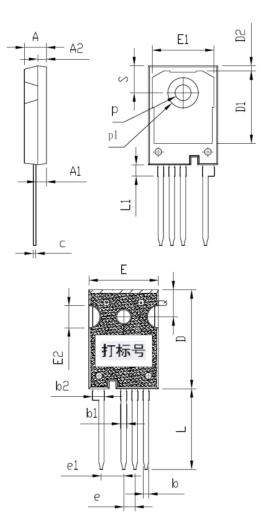



Figure 27. Switching Times vs. R_{G(ext)}

Figure 28. Switching Times Definition

Package TO-247-4

SYMBOLS	DIMENSIONS IN					
	MIN	NOM	MAX			
А		5.00				
A1		2.40				
A2		2.00				
b		1.20				
b1		1.30				
b2		2.65				
с		0.6				
D		22.54				
D1		16.50				
D2		1.17				
е		2.54				
e1		5.08				
E		15.80				
E1		14.00				
E2		5.00				
L		18.38				
L1		2.58				
р		3.60				
p1		6.80				
Q		6.15				
S		6.15				

 Please visit us on: www.yzpst.net
 www.yzpst.com
 f https://www.facebook.com/yzpst

 im
 https://www.linkedin.com/company/yzpst
 https://www.youtube.com/c/YangzhouPositioningTechCoLtd