Hejian Deris Petroleum Drilling Equipment Co., Ltd Drill bit application instructions

1bit selection

- 1. Please reading lithology description and bit records of adjacent wells carefully, and analyzing formation characteristics.
- 2. Selecting appropriate type in accordance with lithology.

2 Preparation before drilling

1.Inspect previous bit for body damage, lost cutters or inserts etc. Make sure there are no any junk on buttom hole, and clean the bottom hole if necessary.

2.Bit must be handled with care in order not no damage cutters and hard substances.

3.Check if there is any damage on bit cuttes and if there any foreign matter inside the bit.

4.Check if installing nozzle is meet requirements, and replace nozzles if necessary.

3 Marking up the bit

1. Clean bit threads and apply grease on threads.

2.Fit the breaker to the bit, lower the drill string onto the pin and engage the threads.

3.Locate the bit and breaker in the rotary bushing, and make-up the bit to be recommended torque.

4 Tripping in

1.Remove the breaker and carefully lower the bit through the wellhead device in order not to damage it.

2.Shrinkage,shoulder,dogleg and key seat of borehole should be cautious when bit through blank hole.

3.Start pump and cycle drilling fluid to wash buttom hole when drill to a point about 30 meters to bottom of the hole, and rotate drill string at the low speed not more than 60rpm.

4.Approach the bottom approximately half meter. Circulate for 5 to 10 minutes with full flow.

5 Reaming

1.Reaming long sections of undergauge hole is not recommended.

2.If reaming operation is necessary, it is strongly recommended that the reaming operation should be done with maximum flow rate circulation, specific weight on bit not exceed 90N/mm (diameter), rotary speed not exceed 60 rpm where stuck was encountered when tripping in.

6 Bit break-in

1.Overusing display instruments when bit approch bottomhole. If the WOB and torque increase, that shows bit have attived at bottomhole.Use not more than 90N/mm, weight –on =bit and 40to 60rpm to establish the bottomhole pattern at least half meter.

2.Bit break-in is finished and should be adjusted RPM to obtain optimal

drilling parameter combination.

3.Drilling parameters adjustment should be selected within the limits of the recommended parameters refer to recommended drilling parameters optimization method.

7 Normal drilling

1.Drilling situations should be monitored and analyzed during, so that we

can judge complex condition and take corresponding measures.

2.See the table of complex circumstance in this manual for any conditions

and treatment action.

Optimal test method for drilling parameters:

- 1. Drill for 5 minutes with initially selected proper WOB and moderate RPM (60~100r/min) and record the ROP (as shown in the table below).
- 2. Moderately increase WOB and keep the same RPM and drill under this WOB for 5 minutes and again record the RPO (as shown in the table below).
- 3. Decrease WOB b the same extent and tepeat step 2.
- 4. Find the WOB in the tow groups of test than can yield highest ROP.
- 5. Properly change RPM under optimal WOB and record the ROP (as shown in the table below).
- 6. Select the RPM at the highest ROP.
- 7. Set the drilling parameter at the best combination:60KN RPM: 120r/min

Times	RPM:100r/min		WOB:60KN	
	WOB	Drilling hour	RPM	Drilling hour
	(KN)	(Min/m)	(r/min)	(Min/m)
1	80	8	100	7
2	100	9	120	5.5
3	60	7	80	8
Select	60	7	120	5.5

Comparison of downhole situation and related measures

Item	Surface behavior	Possible cause	Corrective measure
no.	of downhole		
	problem		

1		Formation becomes	
1		harder	Corrective actions for bit
		Not optimum WOB &	
	Torque increase	RPM	balling are:
	Torque increase	Well inclination increase	1. Pick up off approximately
		Filter cake increase	half meter, and circulate for
		Drill stem washout	10 to 15 minutes with full
2			flow;
Z		Formation becomes softer	2. The bit was swiveled by
			•
	Tomaya daamaaaa	Not optimum WOB & RPM	using different means
	Torque decrease		according to drill rig. Waste matters adhered on the
		Well inclination decrease	
		Filter cake decrease	surface of a bit threw off by
2		Bit balling	using centrifugation.
3		Flow rate increase	Corrective actions for bit
	0, 1	Well plugging	
	Standpipe	Bit wear or cored	bouncing are:
	pressure increase	Mud density or viscosity	
		increase	1. Drilling parameters can be
		Bit balling	changed to shop the bit
4		Drill stem washout	bouncing caused by
		Flow rate decrease	formations. If the problem is
		Mud density or viscosity	not resolved and ROPstill
	Standpipe	decrease	decreased after drilling
	pressure decrease	Air fill into mud	parameters are changed, trip
		Gas kick	out can be considered;
		Mud lost in broken	2. Following measures can be
		formation	taken to stop the bit
5		Formation becomes	bouncing caused by fallen
		harder	matter, broken tooth or lose
		Mud density increase or	tooth,etc.:
		performance	(a) The bit is put up to 0.5 meter
		deterioration	from bottomhole,the
	ROP decrease	Bit wear	high-duty mud circulated and
		Not optimum WOB &	the bit ran about 5 minutes
		RPM	under low RPM (40~60
		Cleaning effect decrease	r/min);
		Bit balling	(b) The high-duty mud
		Drilling tool washout	circulated continuously and
6		Laminar formation	the bit with low RPM is slow
	RPO is instability	Soft and hard interbed	put down the bottomhole;
		Broken formation	(c) Above steps are repeated
		Bit balling	after the bit is put up
7		The bit can be resulted in	again. Then the bit drilled 0.5

	I	Г
	an uneven oscillation due	meter under low RPM
	to large friction torque	(40~60 r/min) and low WOB
	during drilling in plastic	(5~10KN),so that fallen
Bit bouncing	formation, cracked	matters are crushed to
	formation and broken	sidewall;
	formation and therefore,	(d) The bit can dtill continuously
	bit bouncing can occur.	after the bit bouncing is
	In addition,any lost	resolved.Please consider trip
	subject in the hole,	out and fishing.
	including bit's cutting elements broken or lost	Corrective actions when
	in the hole, can also lead to bit bouncing.	drill to hard stringers, hard
		abrasive or hard muddy
		sandstone formation:
		1. If it is forecasted that the
		stringer is not thick, then
		lower RPM and drill through
		the stringer in order to
		extend the bit's sercive life.
		2. If it is forecasted that the
		stringer is thick, then it is
		better to reselect the best
		suitable drilling parameters
		after the bottom hole pattern
		is formed in the stringer or
		hard abrasive formation.