DuPont[™] Vespel[®] Polyimide Shapes

Authorized Supplier of Authentic DuPont[™] Vespel[®] Polyimide Shapes

DuPont[™] Vespel® Polyimide is an extremely high temperature, creep resistant plastic material used in high heat environments where thermoplastic materials lose their mechanical properties and as a lightweight metal replacement. Vespel[®] has long term performance at cryogenic temperatures and up to 260°C (500°F) making it a popular choice for many aerospace and industrial applications.

High performance parts made from DuPont[™] Vespel[®] Polyimide Shapes

- Provide strength and toughness to resist damage
- Withstand high temperatures
- Provide low wear and friction
- Hold tight tolerances
- Are first-class electrical insulators
- Have excellent machinability
- Resist chemical attack
- Offer high purity and low out-gassing

Put us to work for you!"

TYPICAL APPLICATIONS:

- Wafer handling
- Seals
- Valves
- Fasteners
- Gears
- Splines
- Thrust washers
- Wear pads
- Compressor and pump parts
- Piston rings
- Bushings
- Bearings
- Hot glass handling

INDUSTRIES SERVED:

- Aerospace
- Semiconductor/electronics
- High temperature applications

DuPont[™] Vespel[®] Polyimide Shapes

Vespel[®] SP-1 For physical and electrical properties

SP-1 has high purity and provides physical strength, elongation and toughness, along with electrical and thermal insulation properties. Semiconductor manufacturers often find components fabricated from Vespel® SP-1 shapes useful in production processes.

Vespel[®] SP-21

For balanced low wear and physical properties

SP-21 is ideal for low wear and friction in applications. SP-21 has physical strength, elongation, and toughness.

Vespel[®] SP-22

For low wear and dimensional stability

SP-22 provides enhanced resistance to wear and friction as well as improved dimensional and oxidative stability.

Vespel® SP-211

For low coefficient of friction and unlubricated wear

SP-211 provides the lowest coefficient of friction over a wide range of operating conditions. It offers excellent wear resistance up to 300°F (149°C).

Vespel® SP-3

abrasive.

For unlubricated sealing and low wear in vacuum or dry environments SP-3 provides lubrication for seals and bearings in vacuum or dry environments. SP-3 provides maximum wear and friction resistance in vacuum and other moisture-free environments, where graphite becomes

Vespel[®] SCP-5000

For strength, hardness, and chemical resistance over a broad temperature range

SCP-5000 is ideal for demanding applications that require toughness, thermal and dimensional stability, chemical resistance, and stable dielectric performance across a broad temperature range.

Vespel® SCP-5009

For high wear and friction applications under high operating pressure and elevated temperature environments

SCP-5009 shapes have a low coefficient of thermal expansion and provide good sealing as well as outstanding mechanical properties like high compressive strength and low creep, even in extreme conditions.

Vespel[®] SCP-5050

For high temperature, wear resistance, and exceptional coefficient of thermal expansion

SCP-5050 is a new and innovative polyimide composition. SCP-5050 has improved high temperature and wear resistance compared to conventional polyimides allowing replacement of metal and graphite in more applications. Its proprietary composition is designed to offer a coefficient of thermal expansion (CTE) close to the CTE of metals.

Vespel[®] SCP-50094

For high temperature and wear resistance SCP-50094 is a proprietary polymer designed for demanding applications that require high strength, high temperature, and wear resistance.

TYPICAL PROPERTIES OF											
DUPONT ** VESPEL® ISOSTATIC SHAPE GRADES			VESPEL [®] SP					VESPEL® SCP			
	ASTM Method	Units	SP-1 Unfilled	SP-21 15% Graphite	SP-22 40% Graphite	SP-211 15% Graphite & 10% Teflon®	SP-3 Vacuum Bearing Grade	SCP-5000 Unfilled	SCP-5009 Graphite Filled	SCP-50094 Graphite Bearing Grade- Low Fill	SCP-5050 Graphite Bearing Grade- High Fill
MECHANICAL											
Tensile strength 23°C (73°F)	D1708/D638	MPa (kpsi)	86.2 (12.5)	65.5 (9.5)	51.7 (7.5)	44.8 (6.5)	56.5 (8.2)	163 (23.6)	116 (16.9)	124 (18.0)	72 (10.5)
Tensile strength 260°C (500°F)	D1708/D638	MPa (kpsi)	41.4 (6.0)	37.9 (5.5)	23.4 (3.4)	24.1 (3.5)		62 (9)	57 (8.4)	55 (8.0)	39 (5.6)
Elongation at break 23°C (73°F)	D1708/D638	%	7.5	4.5	3.0	3.5	4.0	7.5	3.0	4.3	2.5
Elongation at break 260°C (500°F)	D1708/D638	%	6.0	3.0	2.0	3.0		49.0	9.7	13.0	5.3
Flexural modulus 23°C (73°F)	D790	MPa (kpsi)	3,100 (450)	3,790 (550)	4,830 (700)	3,100 (450)	3,280 (475)	5,760 (836)	6,231 (903)	6,360 (923)	7,790 (1130)
Flexural modulus 260°C (500°F)	D790	MPa (kpsi)	1,720 (250)	2,550 (370)	2,760 (400)	1,380 (200)	1,860 (270)	3,010 (436)	3,560 (516)	3,540 (514)	5,100 (740)
Compressive stress at 10% strain, 23°C (73°F)	D695	MPa (kpsi)	133 (19.3)	133 (19.3)	112 (16.3)	102 (14.8)	128 (18.5)	230 (33.4)	222 (32.2)	220 (31.9)	172 (25)
Deformation under 13.8 MPa (2,000 psi) load	D621	%	0.14	0.10	0.08	0.13	0.12	0.05	0.03	0.05	0.03
FRICTION											
Coefficient of friction at PV = .875 MPa m/s (25,000 psi-ft/min)*			0.29	0.24	0.20	0.12	0.25	0.26	0.22	0.25	0.12
Coefficient of friction at PV = 3.5 MPa m/s (25,000 psi-ft/min)*				0.12	0.09	0.08	0.17	0.15	0.14	0.07	0.08
Static coefficient of friction in air*			0.35	0.30	0.27	0.20					
PV limit (unlubricated)**		MPa-m/s (kpsi ft/min)		12.3 (350)	12.3 (350)	3.5 (100)			25K/0.22 100K/0.14	17.5 (500)	
OTHER PROPERTIES											
Coefficient of thermal expansion 23-300°C (73-572°F)	E831	µm/m/K (10 ⁻⁶ in/in-°F)	54 (30)	49 (27)	38 (21)	54 (30)	52 (29)	47 (26)	44 (24)	43 (24)	29 (16)
Hardness	D785	Rockwell E	45-60	25-45	5-25	1-20	40-55	95	91	91	63
Water absorption 24 hr at 23°C (73°F)	D570	%	0.24	0.19	0.14	0.21	0.23	0.08	0.14	0.06	0.04

*Versus carbon steel, steady state, unlubricated, in air, thrust bearing. **PV limits for any material vary with different combinations of pressure and velocity as well as other conditions.

Standard Sizes: PLAQUE: 10"x10" (0.062"-2.0" thick), 5"x5" and 5"x10" (0.25"-2.0" thick) ROD: diameter 1/8"-6.0" (0.125"-6.0") BALLS: diameter 1/8"-5/8" (DuPont" Vespel® SP-1, only)

The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable and falls within the normal range of properties. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.

