

PRECISION SMALL AND MINIATURE BALL SCREW

PRODUCT MANUAL

SCREW TECHNOLOGY CO., LTD.

Transmission parts and supporting mechanical parts. Linear transmission components, such as single-axis and multi-axis components. Motors, controllers, sensors, encoders, etc. Design, assembly and debugging of non-standard automation equipment, etc.

- 🛞 Professional Customization
- Precision Machining
- High Quality Assurance

http://www.screw-tech.com/

 \bigcirc

SCREWTECH

ABOUT US

We SCREW TECHNOLOGY CO., LIMITED is established in 2011, is a manufacturer of linear motion systems. We committed to providing customers with linear motion solutions. Adhering to the business philosophy of "professional, integrity, and efficiency", we look forward to contributing to the world's automated manufacturing.

Our products include:

Transmission parts and supporting mechanical parts, such as: ball screw and lead screw, guide rail, ball spline, coupling, support unit, nut seat, motor house, adapter plate, bearing, etc.;

Linear transmission components, such as: single axis robot, multi-axis linear modules, electric cylinders, and linear platforms;

Motors, controllers, sensors, encoders, etc., such as: stepper motors, servo motors, drivers, etc.;

Design, assembly and debugging of non-standard automation equipment.

MAIN PRODUCTS

Technical Information

01

02

Standard Ball Screw Nut

Nominal diameter 4/ Nominal diameter 8 Nominal diameter 10 Nominal diameter 12 Nominal diameter 14 **Bi-directional Ball Sci**

03

End-journal machining End Journal Machini

Ball screw select steps 004 Part Number 010

5/6	012
	013
)	015
<u>.</u>	017
4/16/20	019
rew	020

ng	 021
0	

Ball screw model selection guide Selection steps and accuracy requirements

Ball screw model selection steps

Precision requirements for ball screw for different purposes

Purposes		Avia				Accura	cy Grade			
		AXIS	C0	C1	C2	C3	C5	C7	C8	C10
	Latho	Х								
	Laure	Z								
	Processing center	XY								
	machine	Z								
	Duilling marking	XY								
	Dritting machine	Z								
	Coordinate boring	XY								
	machine	Z								
		Х			1					
	Surface grinding	Y								
CNC	Inacinite	Z								
Machine tool	Cylindrical grinding	Х				1			İ	
	machine	Z							1	
	Electric discharge	XY								
	machine	Z								
		XY				1	İ	1	İ	
	Wire cutting machine	Z					1	1	1	
		UV								
	Die-cutting machine	XY								
	Laser processing	Х								
	machine	Z								
	Woodworking m	achine				1				
General n	nachinery, special macl	ninery								
	Rectangular	Assembly								
	coordinate machine	Other								
Industrial robot	Vertical multi-ioint	Assembly				1				
	type	Other								
	Cylindrical coord	linates								
	Exposure dev	rice								
	Chemical processing	machinery	-							
Consideration	Lead welding ma	achine								
related	Probe						1		1	
equipment	Printed circuit boar	d drilling	_						İ	
	machine			-	-			-		
	Electronic componer	nt insertion					•			
Three coordinate measuring equipment		pment				1				
Imag	e processing equipmen	nt								
Inie	ction molding machine			-	-					
inje	Office equipment					1				
	onice equipment			l	1	1				

Ball Screw Run-out and location tolerances

Japan Industrial Standard of Ball Screw (JIS B1192) was revised in 1997, 2013 and 2018 in order to correspond to ISO. Regarding accuracy grade, C series (current JIS C0, 1, 3, 5) and Cp, Ct series (standard corresponding to ISO) are established. There are some differences between C series and Cp, Ct series in notation and tolerances for accuracy of Ball Screw mounting section. KSS uses notation in Fig. A-1 below and standard tolerance value, which conforms to C series standard, and KSS refers to Cp, Ct series standard in case of 7 and 10 grade. Moreover, in the revision of 2018, the notation of perpendicularity changed to "run-out of the mounting surface or end face", and geometric tolerance symbols changed from⊥to ↗.

Fig. A-1: Description of Run-out and location tolerances for Ball Screws

Table A-3: Radial Run-out of Bearing seat related to the centerline of screw groove and Radial Run-out of journal diameter related to the Bearing seat

Shaft nominal d	iameter (mm)	Permissible deviation of Radial Run-out					
Over	Up to	C1	C3	C5	С7	C10	
-	8	5	8	10	14	40	
8	12	5	8	11	14	40	
12	20	6	9	12	14	40	

This measurement item is affected by Total Run-out of the Screw Shaft, and so it must be corrected as follows. Find the corrected value from the Total Run-out tolerances given in Tables A-8 \sim 12 on page 7 \sim 8 using the ratio of the total Shaft length to the distance between the supporting point and the measuring point (L1,L2) (see Fig. A-2), and add the values obtained to the tolerance given in Table A-3.

tion Value of Run-out =	Tolerance of total Run-out (Table	(A-
	Total shaft length	

Compensa

L1,L2: Distance btw supporting pt & measuring pt (mm)

Miniature Ball Screw 🚺

Unit: µm

Fig. A-2: Compensation of Radial Run-out

Table A-4: Axial Run-out (Perpendicularity) of Shaft (Bearing) face related to the centerline of the Bearing seat

Unit: µm

Shaft nominal d	iameter (mm)	Permissible deviations of Axial Run-out(Perpendicularity)					
Over	Up to	C1	C3	C5	С7	C10	
-	8	3	4	5	7	10	
8	12	3	4	5	7	10	
12	20	3	4	5	7	10	

Table A-5: Axial Run-out (Perpendicularity) of Ball Nut location face related to the centerline of Screw Shaft

Unit: µm

Shaft nominal d	iameter (mm)	Permissible deviations of Axial Run-out(Perpendicularity)					
Over	Up to	C1	C3	C5	C7	C10	
-	20	6	8	10	14	20	
20	32	6	8	10	14	20	
32	50	7	8	11	18	30	

Table A-6: Radial Run-out of Ball Nut location diameter related to the centerline of Screw Shaft Unit: µm

Nut outside diameter (mm)		Permissible deviations of Radial Run-out					
	Over	Up to	C1	C3	C5	С7	C10
		20	6	9	12	20	40
	20	32	7	10	12	20	40
	32	50	8	12	15	30	60

Table A-7: Parallelism of rectangular Ball Nut related to the centerline of Screw Shaft

Unit: µm

Mounting le	ngth(mm)		Permissib	le deviations of F	Parallelism	
Over	Up to	C1	C3	C5	С7	C10
-	50	6	8	10	17	30
50	100	8	10	13	17	30

Table A-8: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C1)

Unit: µm

		Shaft nominal diameter				
	Over	-	8	12		
Shaft total length	Up to	8	12	20		
Over	Up to	Permissible devi	iations of total Run-out ir	n radial direction		
-	125	0.020	0.020	0.015		
125	200	0.030	0.025	0.020		
200	315	0.040	0.030	0.025		
315	400	0.045	0.040	0.030		
400	500	-	0.050	0.040		
500	630	-	0.060	0.045		
630	800	-	-	0.060		
800	1000	_	-	0.075		

Table A-9: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C3)

		Shaft nominal diameter			
	Over		8	12	
Shaft total length	Up to	8	12	20	
Over	Up to	Permissible devi	ations of total Run-out ir	n radial direction	
-	125	0.025	0.025	0.020	
125	200	0.035	0.035	0.025	
200	315	0.050	0.040	0.030	
315	400	0.060	0.050	0.040	
400	500	-	0.065	0.050	
500	630	-	0.070	0.055	
630	800	-	_	0.070	
800	1000	_	_	0.095	

Table A-10: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C5)

				Unit: µm
			Shaft nominal diameter	
	Over	-	8	12
Shaft total length	Up to	8	12	20
Over	Up to	Permissible dev	iations of total Run-out in	n radial direction
-	125	0.035	0.035	0.035
125	200	0.050	0.040	0.040
200	315	0.060	0.055	0.045
315	400	0.075	0.065	0.055
400	500	-	0.080	0.060
500	630	-	0.090	0.075
630	800	-	-	0.090
800	1000	-	-	0.120

Table A-11: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C7)

			Shaft nominal diameter	
	Over	-	8	12
Shaft total length	Up to	8	12	20
Over	Up to	Permissible devi	iations of total Run-out ir	n radial direction
-	125	0.060	0.055	0.055
125	200	0.075	0.065	0.060
200	315	0.100	0.080	0.070
315	400	-	0.100	0.080
400	500	-	0.120	0.095
500	630	-	0.150	0.110
630	800	_	_	0.140
800	1000	-	-	0.170

Unit: µm

Unit: µm

Unit: µm

Table A-12: Total Run-out in radial direction of Screw Shaft related to the centerline of Screw Shaft (C10)

			Shaft nominal diameter					
	Over	-	8	12				
Shaft total length	Up to	8	12	20				
Over	Up to	Permissible dev	iations of total Run-out ir	n radial direction				
-	125	0.100	0.095	0.090				
125	200	0.140	0.120	0.110				
200	315	0.210	0.160	0.130				
315	400	-	0.210	0.160				
400	500	-	0.270	0.200				
500	630	-	0.350	0.250				
630	800	-	0.460	0.320				
800	1000	-	-	0.420				

Note) In case of Ct7, Ct10 grade, KSS may use the standard of Total Run-out based on slenderness ratio, which conforms to JIS B1192-2013.

Slenderr	ness ratio	Total Run-out				
Over	Up to	Ct7	Ct10			
-	40	0.080	0.160			
40	60	0.120	0.240			
60	80	0.200	0.400			
80	100	0.320	0.640			

Slenderness ratio = lu/do

lu : Useful travel (mm)

do: Nominal diametor of Ball Screw (mm)

Table A-13: Allowable value for variation (e300) and swing (e 2π) of screw thread length 300mm.

Unit: µm

Accuracy grade	C0	C1	C2	C3	C5	C7	C10
e300	3.5	5	7	8	18	50	210
е2π	2.5	4	5	6	8		

Table A-14: Axial preload grade of miniature ball screw, as follows.

WKT miniature ball screw pair axial backlash and preload combination table

Backlash and preload level	Х		Y		Z		
Backlash value	Backlash value	With	Backlash value	0	Backlash value	0	
and preload level	= 0mm	preload	< 0.005mm	preload	< 0.01mm	preload	
C1	C1X		C1Y		-		
C3	C3X		C3Y		C3Z		
C5	C5X		C5Y		C5Z		

Rolled miniature ball screw pair axial backlash and preload combination table

Backlash and preload level	Z		W		V		U		
Backlash value and preload level	Backlash value < 0.01mm	With preload	Backlash value < 0.02mm	0 preload	Backlash value < 0.03mm	0 preload	Backlash value < 0.05mm	0 preload	
C7	C7Z	C7Z		C7W		C7V		C7U	

The amount of preloading should be determined by the required rigidity or by the tooth side clearance. However, preloading may have the following effects: 1. Dynamic torque increases

Dynamic torque increases
The positioning accuracy is reduced due to heating and temperature rise

3. Shorten service life

Therefore, a low preload should be set as far as possible.

Method for measuring precision of ball screw assembling part

WKT ball screw measuring Geometric Tolerance based on screw shaft central axis, below is measuring process:

Using a qualified deflection instrument (or machine tool with a center). Withstanding two ends of the screw by center, so that the screw is supported on the deflection instrument or machine tool smoothly. The magnetic dial seat of the dial indicator is attracted On the surface of the deflection instrument or the machine tool guide rail. At the same time, the probe of the meter head should be at the angle of <30° with the surface to be measured, and touch the measurement part; rotating dial makes the pointer to 0, while rotating the screw, Reading the dial indication. During a rotation period, the scale within the range of the dial pointer's left-right deflection is the measured data.

This method can measure the runout of any outside surface of the screw and the central. As shown below:

The perpendicularity of the central axis and the end surface of the nut (or flange assembling surface)

Using a qualified instrument (or machine tool with a center), Withstanding two ends by center, so that the screw is supported on the deflection instrument or machine tool smoothly. See the below drawings:

Measuring nuts external diameter runout, attaching the magnetic dial base of the dial indicator to the surface of the deflection instrument or the machine tool guide rail, at the same time, the probe of the meter head is lightly touched on the measurement position in an attitude with the angle of <30; Rotating the dial makes pointer to 0, while rotating the screw (there is no relative movement between the screw and nut), reading dial indication. Within one rotation period, the scale left and right deflection of the dial pointer is the measured value; if measuring nuts end face runout, the dial indicator must be installed on the base of the height ruler which can be adjusted manually. The base of the height ruler is installed on the surface of the guide rail. Put meter head vertically on screw nut end surface, rotating hand to make dial indicator is the measured data.

Precautions for the use of ball screw

○ Precautions for handling and installation

1. If the nut is removed from the screw shaft, the steel balls will fall out of the nut and make it unusable. Do not disassemble. Otherwise, impurities will enter the interior and damage the assembly precision of each part. When need to remove the nut, please use the special false axis.

2. Do not impact the nut External shock will damage the outer circle of the screw shaft, spiral groove and circulation parts , resulting in poor circulation and loss of function. Please avoid it.

3. Pay attention to the nut falling off due to free fall Tilting ball screws and nuts may fall due to dead weight, please pay attention. Especially when used as the vertical axis, the possibility of nut falling due to dead weight is greater, please set the fall prevention mechanism.

4. Check screw smoothness before use Test the flexibility by turning the screw shaft with the fixing nut, or by turning the nut with the fixing shaft.

\bigcirc Precautions for use

1. Please use the ball screw in a clean environment If garbage, chips and other foreign bodies enter the ball screw, it will lead to damage to the ball circulation parts and loss of function, so please set a cover to prevent foreign bodies.

2. Do not make the ball screw nut overrun during use. Otherwise it will lead to ball drop and ball circulation parts damage and other faults.

3. Please avoid using in an environment over $80^\circ C$. Failure to do so may result in damage to circulation parts and seals.

4. When the support part of the ball screw shaft and the nut produce axial deviation or tilt, the nut will bear off-load, which will lead to shortened service life in serious cases, so please pay attention to the assembly precision.

\bigcirc Remove nut from screw to false shaft

- remove nut from screw shaft -

 \cdot Make the lead screw shaft into a vertical state, and align the axis of the auxiliary shaft with the lead screw shaft at the end face of the supporting side of the lead screw shaft.

· Gently turn the nut and slowly move it to the auxiliary shaft .

 \cdot After confirming that both ends of the nut have been completely moved to the auxiliary shaft, remove the auxiliary shaft from the lead screw shaft.

· Please take good care of it. Do not let the nut fall off the auxiliary shaft.

\bigcirc Install the nut from the false shaft to the screw rod

- Remove the nut from the auxiliary shaft to the screw shaft -

 \cdot Make the lead screw shaft into a vertical state, and align the axis of the auxiliary shaft with the lead screw shaft at the end face of the supporting side of the lead screw shaft.

 $\cdot\,\mbox{Gently press the nut in the direction of the screw shaft and rotate it slowly to the screw shaft.$

 \cdot When moving the nut to the lead screw axis, if there is a tight or stuck feeling, do not force the nut to move, carefully check the situation and then re-work.

Ministure Pall Scrow

Steel ball circulation mode

Internal Deflector

Internal Deflector return is the most basic and widely used, with the help of path on the role of the bead groove, forcing the ball rolling along the raceway, over the screw thread raceway after the tooth tip, back to the initial raceway, formed a circular ball chain, suitable for all kinds of diameter and nut style. In all circulation systems, the nut diameter Internal Deflector return can be minimized, suitable for all kinds of precision micro equipment.

Return Plate

Nut with return plate, suitable for large lead ball screw, large load, and low in cost.

End-cap

Refers to the way in which the steel ball rolls along the groove between the screw shaft and the nut, passes through the through hole on the nut through the path installed on the end cover backer at both ends of the nut, and returns to the original position. It has stronger scraping effect, and the strengthening of the circulating backflow structure increases the function of high rigidity and high speed. It is suitable for the design of high speed light load and low noise.

Return Tube

The return tube recirculation type is an evolution from the internal deflector. To guide the balls into and out of the elbow tube by means of a tongue bevel at the end of the elbow tube inserted into the hole or other form of bead stopper.

Liner Return

Liner Return type has the advantages of small space and high load capacity, while with higher difficulty. So this type is proper for some special situations.

Professional supplier of transmission components

Screwtech has a full range products including ball screw, lead screw, support units, coupling, linear guideways, linear module, positioning slides, linear actuator, etc.

The abilities of providing technical support, solutions and customized services make SCREWTECH your best choice for partners.

		illature Da						Naming method	
Part Number	r / Orde	ring information	<u>H - 74</u> -	<u>99B</u> -	<u>DY</u> -	<u>S1</u>	<u>(WS)</u>	- <u>C5X-V1</u>	
12	3 4		B) (9)	10 11	(12)	(13)	(14)	<u> </u>	
Name Phrase	Number	Representative name	Marking mode	e			Meaning		
		Thread type code	М				standard nut		
		Thread type code	G				custom ballnut		
			l				Floating deflecto	r	
			U		waist shaped floating deflector				
	0	Cuclo modo	K			Cı	utting-type deflec	tor	
	2	Cycle Mode	Р			C	over plate deflect	tor	

		, ,	Р			Cover plate defle	ector				
			W			Intubated defle	ctor				
			E			End cover defle	ctor				
-					0	Round nut with f	lange witho	ut milling flat			
					D	Round nut with	flange singl	e milling flat			
					н	Round nut with	flange doub	le milled flat			
			F	Round nut Y Round nut with flange milled square							
			F								
Nut					^	Round nut wit	II Italige IIII				
	3	Nut shape			L	Round nut witr	i flange mill	ing nexagon			
					Q	Other rou	nd nut with	flange			
			S			Square nut					
			A			Round nut with triange	ular thread				
			В			With trunnio	1				
			C			Cylindrical with ke	eyway				
_	_		T			Irregular shap	e				
_	(4)	Nominal diameter	Value	Unit mm							
_	5	Lead	Value			Unit mm					
	6	Extra code letters	Letter	Same	e specif	ication with multiple sta	ndard nut, c	distinguished			
_						by letters B\C\D\I	E\F\G				
_	7	Number of circuit	Numerical value			Number of tur	ns				
	8	Rotation direction	LH\RL	LH = left-hand, RL = left hand + right hand, right hand is no							
_	9	Total length of thread	Value			Length of thre	ad				
_	10	Length of shaft	Value			Length of ball scre	w shaft				
	1	Extra code letters	Letter	Drawings hav	/e the	same name but differer letters B/C/D/E/	nt version, « 'F/G	distinguished by t			
Screw Shaft	Extra code letters		Letter	Hexagon NC, outer nexagon LF, with large steps DY and DJ (D = large steps, = large steps and screw body production, J = Non-integrated production of large steps and screw body, with large steps for insert processing or the shal end with large steps and the screw body to be made by butting. The nam of the large step is placed at the back of the total length and in front of th material. For example, MIF0601-48- 77.5-DY-S1-C5X), the large step code must be written into the model now.							
			6 (not marked by default)			CCr15	Juet now.				
						SS304					
	(13)	Material	<u> </u>			\$5316					
		Materiat	<u> </u>			SS316					
Material			<u> </u>			SSAADC (QCr19	2)				
and surface			<u> </u>			554400 (50110)/	Low temperatu			
treatment				(CR)		Chrome coating	(BR)	black chrome			
	14	Surface treatment	(Letter)	(WS)	Tung	sten Disulfide coating	(7N)	Zinc coating			
				(MS)	Mc	lybdenum disulfide	(BL)	Black coating			
	15	Accuracy grade	C3/C5			Accuracy grade of ba	all screw				
		neculacy glade	×	Rac	klach	alue = 0mm	\\/i	ith preload			
			× V	Rackle	achival	$u_{\rm LO} < 0.005 \text{mm}$					
Accuracy and		Packlachvalue and	7	Backle	ash va	luc < 0.000 mm) preload			
preload level	16			DaCK		$u \in \langle 0.01111111$	C				
		preiodu ievei	V V	DdCKl		ue < 0.02111111	(
				DaCKI		ue < 0.05	C				
The version			0		asii Vdl	$ue \setminus 0.00111111$	nd V/2 are	sod to identify the			
number	17	The version number	V and Value	i në urawli	ngs 118 Vei	rsion numbers changed i	n the drawir	sed to identify the			

Miniature Ball Screw 📶

The defence

Nominal Diameter 4,5,6 **Ballscrew Nut in Stock**

Nominal Diameter 4,5,6 Ballscrew Nut in Stock

MIF

MIF

MIS	,
	4-MX⊽Z —∕

Model	d	L	L1	W	W1	W2	Н	H1	Х	Z
MIS0601	6	16	12	14	10	7	12	6	2.5	5
MIS0601B	6	20	15	13	8	6.5	11	5.5	2.5	5
MIS0601C	6	15	10	15	10	7.5	12.5	6	2.5	5.5
MIS0601G	6	15	10	13	8	6.5	11	5.5	2.5	4
MIS0602	6	20	15	13	8	6.5	11	5.5	2.5	5

Model	d	D	F	L	В	W	Н	Х
MIF0401	4	10	20	12	3	15	14	2.9
MIF0501	5	10	20	12	3	15	14	2.9
MIF0601	6	12	24	15	3.5	18	16	3.4
MIF0601B	6	13	26	17	4	20	16	3.4
MIF0601C	6	11	23	14.5	3.5	17	15	3.4
MIF0602	6	12	24	15	3.5	18	16	3.4
MIF0602B	6	15	28	17	4	22	19	3.4

Model d D L MIA0401 10 15 5 M8x0.75 6 MIA0401B M12x1.5 12 15 6 5 MIA0601 12 16 5 10 M10x1 6 2 12 20 M10x1 MIA0602 6 6 15 MIA0602B 12 5 M10x1 6 MIA0602C 6 12 20 6 11 M10x1 8

MEF

Model	d	D	F	L	В	W	Н	Х	Y	Z	R
MIF0601D	6	10	21	14.5	3.5	15	10	2.9	5	2.1	3

Model	d	D	F	L	L1	В	W	Н	Х
MEF0606	6	14	27	17	9.5	4	21	16	3.4

Model	Nominal diameter	Lead	Accuracy	Ball Diameter	Circuts	Basic rate	ed load(N)
Model	(mm)	(mm)	grade	Datt Diameter	circuts	Dynamic load	Static load
	4	1		0.8	3	490	700
MIE	5	1		0.8	3	530	810
IVIT	G	1		0.8	3	580	1000
	0	2]	1.2	3	750	1200
	4	1	63	0.8	3	400	150
MIA	C	1	C3,	0.8	3	580	1000
	0	2	63,	1.2	3	750	1200
MEF	6	6		1.0	3.2	870	1450
MIC	G	1		0.8	3	660	1110
MIS	0	2		1.2	3	750	1200
MIC	6	2		1.2	3	730	1210

MIC0602

	Performance testing
Free service	Seletion consultance
	Design Assistance
Please co	ntact the salesman for details

ĦĦ **4-øX** 通孔

Miniature Ball Screw 📶

MIS

Model	d	L	L1	W	W1	W2	Н	H1	В	n	Х	Z
MIS0601E	6	20	15	13	8	6.5	11	5.5	4	8.5	3	6
MIS0602B	6	20	15	13	8	6.5	11	5.5	4	8.5	3	5

MIC			
		h	+
		ľ	(<i>Lb</i>)09
	ų	¥_	<u> </u>
Madal	D		

12

	Stainless steel and other customized materials
Services beyond	Surface treatment
	Customized Ballscrew Nut and end journal
Standard Sizes	Grease Replacing
	Maintenance and assembling
Plea	se contact the salesman for details

http://www.screw-tech.com

15

Nominal Diameter 8 Ballscrew Nut in Stock

MIF(MUF)

Model	d	D	F	L	В	W	Н	Х	
MIF0801	8	14	27	16	4	21	18	3.4	
MIF0801C	8	13	26	15	4	20	17	3.4	
MIF0801D	8	12	25	15	4	19	16	3.4	
MIF0802	8	14	27	16	4	21	18	3.4	
MIF0802B	8	16	29	26	4	23	20	3.4	
MIF0802C	8	15	28	18	4	22	19	3.4	
MIF0802D	8	14	27	17	6	21	19	3.4	
MIF0802.5	8	16	29	26	4	23	20	3.4	
MIF0802.5B	8	16	28	30	6	22	19	3.4	

Model	d	D	L	S	S1	W	н
MIC0801	8	14	16	10	3	3	1.8

MPF

Model	d	D	F	L	В	W	Н	Х
MPF0804C	8	21	39	28	5	31	23	4.5
MPF0805	8	18	31	28	4	25	20	3.4

Model	d	D	F	L	В	W	Н	Х
MIF0801	8	14	27	16	4	21	18	3.4
MIF0801C	8	13	26	15	4	20	17	3.4
MIF0801D	8	12	25	15	4	19	16	3.4
MIF0802	8	14	27	16	4	21	18	3.4
MIF0802B	8	16	29	26	4	23	20	3.4
MIF0802C	8	15	28	18	4	22	19	3.4
MIF0802D	8	14	27	17	6	21	19	3.4
MIF0802.5	8	16	29	26	4	23	20	3.4
MIF0802.5B	8	16	28	30	6	22	19	3.4
MUF0804	8	16	29	26	4	23	20	3.4

MIC

MIA

Model	d	D	L	L1	L2	L3	W	Н	Е	Т
MIA0801	8	16	22	8	-	-	-	-	-	M14x1
MIA0802	8	16	27	8	-	-	-	-	-	M14x1
MIA0802B	8	18	27	8	-	5	-	-	17	M14x1
MIA0802.5B	8	17.5	23.5	7.5	3	-	3.2	2	-	M15x1

Model	d	D	F	L	L1	В	W	Н	Х
MEF0808	8	18	31	21.5	13	4	25	20	3.4
MEF0810	8	18	31	24	13	4	25	20	3.4

Model	d	L	L1	W	W1	W2	Н	H1	Х	Z
MIS0801B	8	20	15	14	8	7	13	6.5	2.5	5

Model	d	L	L1	W	W1	W2	Н	H1	В	n	Х	Z
MIS0801C	8	20	15	16	12	8	14	7	4	10.5	2.5	5
MIS0801D	8	20	15	14	8	7	13	6.5	4	10.5	2.5	5
MIS0802B	8	20	15	16	12	8	14	7	4	10.5	2.5	5

	Stainless steel and other customized materials				
	Surface treatment				
Services beyond standard sizes	Customized Ballscrew Nut and end journal				
	Grease Replacing				
	Maintenance and assembling				
Plea	se contact the salesman for details				

Nominal Diameter 8

Ballscrew Nut in Stock

Nominal Diameter 10 Ballscrew Nut in Stock

Modol —	Nominal diam <u>eter</u>	Lead	Accuracy	Pall Diamotor	Circute	Basic rate	d load(N)
Model	(mm)	(mm)	grade	Ball Diameter		Dynamic load	Static load
		1		0.8	3	780	1650
145	0	2		1.2	3	1500	2600
MIF	8	2.5		1.2	3	1850	3000
		4		1.588	3	2350	3300
		1		0.8	4	780	1650
MIA	8	2		1.2	4	1500	2600
		2.5		1.588	4	1850	3000
MIC	8	1	C3, C5,	0.8	3	1350	2250
MEE	0	8		1.588	3.2	2200	3800
MEF	8	10		1.588	3.2	2200	3900
		4		2.0	3.5	2600	4200
MPF	8	5		1.588	2.5	1800	3000
		8		1.588	2.5	1700	3400
MIC	0	1		0.8	3	780	1650
MIS	ŏ	2		1.2	3	850	1600

The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.

Model	d	D	F	L	В	W	Н	Х	Q
MIF1002	10	18	35	28	5	27	22	4.5	-
MIF1003	10	20	37	32	6	29	24	4.5	-
MIF1004	10	20	37	38	8	29	24	4.5	M5

Model	d	D	F	L	В	W	Н	Х
MIF1003B	10	23	39	30	6	29.7	30	4.5
MIF1004B	10	23	41	30	6	30	30	4.5

MIF

Model	d	D	F	L	В	W	Н	Х	Y	Z	Q
MIF1004C	10	26	46	34	10	36	28	4.5	8	4.5	M6

Free service	Seletion consultance
	Design Assistance
Please cor	ntact the salesman for details

Miniature Ball Screw 📶 👘

Model	d	D	L	L1	L2	W	Н	Т
MIA1002	10	19.5	22	7.5	3	3.2	2.5	M17x1
MIA1002B	10	18	28	7	-	-	-	M16x1
MIA1004	10	21	30	8	3	3.2	3	M18x1

MWF

MIA

Model	d	D	F	L	В	W	Н	H2	Х	Y	Z
MWF1004	10	26	46	34	10	36	28	42	4.5	8	4.4

	Stainless steel and other customized materials
	Surface treatment
Services beyond standard sizes	Customized Ballscrew Nut and end journal
	Grease Replacing
	Maintenance and assembling
Plea	se contact the salesman for details

WKT[®] Miniature Ball Screw

Nominal Diameter 10 Ballscrew Nut in Stock

Nominal Diameter 12 Ballscrew Nut in Stock

Madal	Nominal diameter	Lead	Accuracy	Poll Diameter	Circuta	Basic rate	d load(N)				
Model	(mm)	(mm)	grade	Dall Diameter	Circuis	Dynamic load	Static load				
		2		1.2/1.588	3	1500	2600				
MIF	10	3		2.0	3	2600	5200				
		4		2.381	3	3000	5200				
MIA	10	2	C3, C5,	1.2/1.588	4	1950	3800				
MIA	10	4		2.381	3	3000	5200				
MEF	10	10		2.0	3.2	3300	5900				
MWF	10	4		2.0	2.5	3350	5900				
The	The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.										

Model	d	D	F	L	В	W	Н	Х
MIF1201	12	20	37	28	5	29	24	4.5
MIF1202	12	20	37	28	5	29	24	4.5
MIF1203	12	22	39	32	6	31	26	4.5
MIF1204C	12	24	40	28	6	32	25	3.5
MIF1205	12	22	43	38	8	31	26	4.5

MIF

MIF

Model	d	D	F	L	В	W	Н	H2	Х	Y	Z	Q
MIF1202B	12	20	40	33	8	29	25	36	4.5	8	5	-
MIF1204B	12	26	46	34	8	36	28	42	4.5	8	4.5	M6
MIF1205B	12	30	50	40	10	40	32	45	4.5	8	4	M6

	Performance testing				
Free service	Seletion consultance				
	Design Assistance				
Please contact the salesman for details					

MIF

Model	d	D	F	L	В	W	Н	Х	Y	Z
MIF1202C	12	25	44	35	8	33	34	4.5	8	4.4

MIF

Model	d	D	F	L	В	W	Н	Х	Y	Z	Q
MIF1204D	12	24	44	40	10	34	34	4.5	8	4.5	M6

MIA

Model	d	D	L	L1	Т
MIA1204	12	25.5	34	10	M20x1
MIA1205	12	24	38	10	M20x1
MIA1202	12	20	28	10	M18x1

	Stainless steel and other customized materials						
Services beyond	Surface treatment						
	Customized Ballscrew Nut and end journal						
	Grease Replacing						
	Maintenance and assembling						
Plea	Please contact the salesman for details						

Q 油孔 30 30 øD(g7) øF øW±0.2

Model d D F L B W H H2 X Y Z MWF1210 12 30 50 50 10 40 32 45 4.5 8 4.4 M6

Model	d	D	F	L	В	W	Н	Х	Q
MEF1205	12	24	40	28	10	32	30	4.5	M6
MEF1210	12	24	40	28	10	32	30	4.5	M6

Medal	Nominal diameter	Lead	Accuracy	Roll Diamator	Circuto	Basic rate	ed load(N)						
Model	(mm)	(mm)	grade	Dall Diameter	Circuts	Dynamic load	Static load						
		1		0.8/1.588	3	780	1600						
		2		1.2/1.588	3	3000	6000						
MIF	12	3		1.588	3	3650	9900						
		4		2.0	3	4100	9900						
		5		2.0	3	6190	8830						
		2		1.2/1.588	3	1730	3170						
MIA	MIA 12	4	СЗ,	2.5	3.5	4100	9900						
		5	C5,	C5,	C5,	C5,	C5,	C5,	C5,	2.0	3	2500-4100	3700-7400
MIC	12	5		2.0	3	6190	8820						
МРЕ	10	8		2.381	2.5	2840	5190						
MIPE	12	10		2.5	2.8	6420	12870						
MWF	12	10		2.381	2.5	5000	9800						
МЕЕ	12	5		2.381	3.7	4100	7400						
MEF	12	10		2.381	3.4	5100	9800						
Th	e above models can be	made as left hand thre	ead, right hand thread o	or Bi-directinal(left han	d+right hand) thread,	special sizes can be cu	ustomized.						

MWF

Nominal Diameter 14,16,20 **Ballscrew Nut in Stock**

MIF

Model	d	D	F	L	В	W	Н	Х	Q
MIF1402	14	21	40	23	6	31	26	5.5	-
MIF1403	14	24	41	32	6	33	28	5.5	-
MIF1404	14	26	45	33	6	36	28	5.5	-
MIF1404B	14	26	45	36	8	35	28	5.5	-
MIF1405	14	26	46	40	8	36	30	5.5	-
MIF1602	16	25	43	40	10	35	29	5.5	M6
MIF2002	20	30	50	40	10	40	35	5.5	M6

	Nominal diameter	Lead	Accuracy			Basic rate	ed load(N)
Model	(mm)	(mm)	grade	Ball Diameter	Circuts	Dynamic load	Static load
		2		1.2/1.588	3	2890	6330
	14	3		1.588	3	2900	4600
	MIE	4		2.381	3	4500	8600
		5	C3, C5.	3.175	3	5700	11600
	16	2	,	1.2/1.588	3	3730	12000
	20	2		1.2/1.588	4	5810	22840
MEF	16	16		3.175	3.2	8080	17690
The	The above models can be made as left hand thread, right hand thread or Bi-directinal (left hand+right hand) thread, special sizes can be customized.						

	Performance testing				
Free service	Seletion consultance				
	Design Assistance				
Please contact the salesman for details					

MPF

Model	d	D	F	L	В	W	Н	Х
MPF1208	12	24	40	42	10	32	30	4.5

øD(g7)

Miniature Ball Screw 📶

MEF

Services beyond	Stainless steel and other customized materials			
	Surface treatment			
	Customized Ballscrew Nut and end journal			
Standard Sizes	Grease Replacing			
	Maintenance and assembling			
Please contact the salesman for details				

Bi-directional Ball Screw

Model	d	L	Ball Diameter	Other Parameters
MIF0501	5	1	0.8	
MIF0601	6	1	0.8	
MIF0801		1	0.8	
MIF0801.5	8	1.5	1.0	
MIF0802		2	1.2	
MIF1001		1	0.8	
MIF1001.5	1	1.5	1.0	
MIF1002	1	2	1.2	
MIF1002.5	10	2.5	1.5875	
MIF1003	1	3	2.0	
MIF1004		4	2.0	
MIF1005		5	2.0	
MIF1201		1	0.8	Pls contact salesman f
MIF1202		2	1.2	more information
MIF1202.5	12	2.5	1.5875	
MIF1203		3	2.0	
MIF1204		4	2.381	
MIF1401	14	1	0.8	
MIF1402		2	1.2	
MIF1402.5		2.5	1.5875	
MIF1403		3	2.0	
MIF1404		4	2.381	
MIF1405		5	2.381	
MIF1601		1	0.8	
MIF1602	16	2	1.2	
MIF1603		3	2.0	

∰⊫∋

MEF

Model	d	L	Ball Diameter	Other Parameters
MEF0606	6	6	1.2	
MEF0808	8	8	1.588	
MEF1010	10	10	2.0	Pls contact salesman for more information
MEF1210	12	10	2.381	
MEF1616	16	16	3.175	

Notes:

1. For the above standard bi-directional nut, you can refer to the technical parameters of right hand thread or left hand thread.

2.Nut size and shape can be customized as per your specific requirement or a detailed drawing. 3.Various material is available for both screw and nut.Kinds of surface coating is doable according to your requirement.

4. Standard ballnut in stock, fast delivery. For customized screw and ballnut, pls contact salesman for exact lead time.

End-journal machining

Typical Journal Ends	Journa	al ends machining Symbol and Feature	Diagram	
	Symbol	Features	Diagram	
Fixed end(F)	F	coupling end+thread lock+bearing block		
	FM	coupling end(axial threaded hole)+thread lock+bearing block		
	FD	coupling end(milling with one cut face)+thread lock+bearing block		
	FH	coupling end(milling with two cut faces)+thread lock+bearing block		
	FX	coupling end(milling square)+thread lock+bearing block		
	FU	coupling end(key way)+thread lock+bearing block		

Flanged end-journal for Bearing seat

A. no processing

Related accessories

Screw Typical Journal	Scre mach	ew Journal ends ining Symbol and Feature	Diagram	
Ends	Symbol	Features		
	S	bearing block		
Support end(S)	SM	bearing block+axial threaded hole		
	SH	bearing block+milling with one cut face		
	SX	bearing block+milling with two cut faces		
	SU	bearing block+milling square		
	SC	bearing block+keyway		
	SD	bearing block+circlip		

Precautions for use

Do not rotate the nut beyond the effective travel of the ball screw or unscrew the screw. Otherwise, the ball will fall off and return to the damage of the results. Tilting the ball screw may cause the nut to fall off due to dead weight, please note.

Run the nut within the effective stroke Do not remove the nut by yourself

Note

Lithium base genernal greasee No.2 (Chinese Brand Great Wall) Grease can be changed as required.

If you have any other requiremen please contact the sales staff Telephone: +86-0512-66903936 Website: www.screw-tech.com

SCREW TECHNOLOGY CO., LTD.

Add:No 988,Wsong Road,Wuzhong Disrict,Suzhou,China Tel:+86-0512-66903936,+86-0512-65073935 E-mail:IMD@screwtech.cn Web:http://www.screw-tech.com/

V-5.1 20220919